close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Initial Version and Version 1 of OfficialTolArchiveNetworkQltvRespModel


Ignore:
Timestamp:
Dec 20, 2010, 7:20:27 PM (15 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkQltvRespModel

    v1 v1  
     1= Package QltvRespModel =
     2
     3Max-likelihood and bayesian estimation of qualitative response models.
     4
     5== Weighted Boolean Regresions ==
     6
     7Abstract class
     8[source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtBoolReg.tol @WgtBoolReg]
     9is the base to inherit weighted boolean regressions as logit or probit or any other
     10given justthe scalar distribution function.
     11
     12This class implements max-likelihood by means of package
     13[wiki/OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian estimation
     14using [wiki/OfficialTolArchiveNetworkBysSampler BysSampler].
     15
     16User can and should define scalar truncated normal or uniform prior information and
     17bounds for all variables for which he/she has robust knowledge.[[BR]] [[BR]]
     18[[LatexEquation( \beta_k \sim N\left(\nu_k, \sigma_k \right) )]]
     19[[LatexEquation( l_k \le \beta_k \le u_k \wedge l_k < u_k)]]
     20When [[LatexEquation( \sigma_k )]] is infinite or unknown we will express a uniform
     21prior.
     22When [[LatexEquation( l_k = -\infty)]] or unknown we will express that variable
     23has no lower bound.
     24When [[LatexEquation( u_k = +\infty)]] or unknown we will express that variable
     25has no upper bound.
     26
     27It's also allowed to give any set of constraining linear inequations [[BR]] [[BR]]
     28[[LatexEquation( A \beta \le a )]]
     29
     30=== Weighted Logit Regression ===
     31Class [source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtLogit.tol @WgtLogit]
     32is an specialization of class
     33[source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtBoolReg.tol @WgtBoolReg]
     34that handles with weighted logit regressions.
     35
     36
     37=== Weighted Probit Regression ===
     38Class [source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtProbit.tol @WgtProbit]
     39is an specialization of class
     40[source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtBoolReg.tol @WgtBoolReg]
     41that handles with weighted probit regressions.