close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Version 2 and Version 3 of OfficialTolArchiveNetworkQltvRespModel


Ignore:
Timestamp:
Dec 20, 2010, 9:33:46 PM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkQltvRespModel

    v2 v3  
    77Abstract class
    88[source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtBoolReg.tol @WgtBoolReg]
    9 is the base to inherit weighted boolean regressions as logit or probit or any other
    10 given justthe scalar distribution function.
     9is the base to inherit weighted boolean regressions as logit or probit or any other,
     10given just the scalar distribution function [[LatexEquation( F )]] and the
     11corresponding density function [[LatexEquation( f )]]. In a weighted regression
     12each row of input data has a distinct weight in the likelihood function. For
     13example, it can be very usefull to handle with data extrated from an stratified
     14sample.
    1115
    1216This class implements max-likelihood by means of package
    13 [wiki/OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian estimation
    14 using [wiki/OfficialTolArchiveNetworkBysSampler BysSampler].
     17[wiki:OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian estimation
     18using [wiki:OfficialTolArchiveNetworkBysSampler BysSampler].
     19
     20Let be
     21 * [[LatexEquation( X\in\mathbb{R}^{m\times n} )]] the regression input matrix
     22 * [[LatexEquation( w\in\mathbb{R}^{m} )]] the vector of weights of each register
     23 * [[LatexEquation( y\in\mathbb{R}^{m} )]] the regression output matrix
     24 
     25The hypotesis is that [[LatexEquation( \forall i=1 \dots m )]]
     26
     27  [[LatexEquation( y_{i}\sim Bernoulli\left(\pi_{i}\right) )]]
     28  [[LatexEquation( \pi_{i}=Pr\left[y_{i}=1\right] = F\left(X_{i}\beta\right) )]]
     29
     30The likelihood function is then
     31
     32  [[LatexEquation( lk\left(\beta\right)=\underset{i}{\underset{i}{\prod}\pi_{i}^{w_{i}y_{i}}\left(1-\pi_{i}\right)^{w_{i}\left(1-y_{i}\right)}} )]]
     33
     34and its logarithm
     35
     36  [[LatexEquation( L\left(\beta\right)=\ln\left(lk\left(\beta\right)\right)=\underset{i}{\sum}w_{i}\left(y_{i}\ln\left(\pi_{i}\right)+\left(1-y_{i}\right)\ln\left(1-\pi_{i}\right)\right) )]]
     37
     38The gradient of the logarithm of the likelihood function will be
     39
     40  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{j}}=\underset{i}{\sum}w_{i}\left(y_{i}\frac{f\left(x_{i}\beta\right)}{F\left(x_{i}\beta\right)}-\left(1-y_{i}\right)\frac{f\left(x_{i}\beta\right)}{1-F\left(x_{i}\beta\right)}\right)x_{ij} )]]
     41
     42and the hessian is
     43
     44  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial_{j}}=\underset{k}{\sum}w_{k}\left(y_{k}\frac{f'\left(x_{k}\beta\right)F\left(x_{k}\beta\right)-f^{2}\left(x_{k}\beta\right)}{F^{2}\left(x_{k}\beta\right)}-\left(1-y_{k}\right)\frac{f'\left(x_{k}\beta\right)\left(1-F\left(x_{k}\beta\right)\right)+f^{2}\left(x_{k}\beta\right)}{\left(1-F\left(x_{k}\beta\right)\right)^{2}}\right)x_{ik}x_{jk} )]]
     45
    1546
    1647User can and should define scalar truncated normal or uniform prior information and
     
    2556has no upper bound.
    2657
    27 It's also allowed to give any set of constraining linear inequations [[BR]] [[BR]]
     58It's also allowed to give any set of constraining linear inequations if they
     59are compatible with lower and upper bounds [[BR]] [[BR]]
    2860[[LatexEquation( A \beta \le a )]] [[BR]] [[BR]]
    2961
     
    3466that handles with weighted logit regressions.
    3567
     68In this case we have that scalar distribution is the logistic one.
     69
     70  [[LatexEquation( F\left(z\right) = \frac{1}{1+e^{-z}} )]] [[BR]] [[BR]]
     71
     72  [[LatexEquation( f\left(z\right) = \frac{e^{-z}}{\left(1+e^{-z}\right)^2} ]] [[BR]] [[BR]]
     73
     74  [[LatexEquation( f'\left(z\right) = -f\left(z\right) F\left(z\right) \left(1-e^{-z}\right) ]] [[BR]] [[BR]]
     75
     76  [[LatexEquation( L\left(\beta\right)=\underset{i}{\sum}w_{i}\left(y_{i}x_{i}^{t}\beta-\ln\left(1+e^{x_{i}^{t}\beta}\right)\right) )]]
     77
     78  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{j}}=\underset{i}{\sum}w_{i}\left(y_{i}x_{ij}-x_{ij}\left(\frac{e^{x_{i}^{t}\beta}}{1+e^{x_{i}^{t}\beta}}\right)\right)=\underset{i}{\sum}w_{i}x_{ij}\left(y_{i}-\left(\frac{e^{x_{i}^{t}\beta}}{1+e^{x_{i}^{t}\beta}}\right)\right) )]]
     79
     80  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial_{j}}=-\underset{k}{\sum}w_{k}\frac{\left(1+e^{x_{k}^{t}\beta}\right)e^{x_{k}^{t}\beta}x_{ki}x_{kj}-\left(e^{x_{k}^{t}\beta}\right)^{2}x_{ki}x_{kj}}{\left(1+e^{x_{k}^{t}\beta}\right)}=-\underset{k}{\sum}x_{ki}x_{kj}w_{k}\pi_{i}\left(1-\pi_{i}\right) )]]
     81
    3682
    3783=== Weighted Probit Regression ===
     
    4086[source:/tolp/OfficialTolArchiveNetwork/QltvRespModel/WgtBoolReg.tol @WgtBoolReg]
    4187that handles with weighted probit regressions.
     88
     89In this case we have that scalar distribution is the standard normal one.
     90
     91  [[LatexEquation( F\left(z\right) = F_{0,1}\left(z\right) )]] [[BR]] [[BR]]
     92
     93  [[LatexEquation( f\left(z\right) = f_{0,1}\left(z\right) )]] [[BR]] [[BR]]
     94
     95  [[LatexEquation( f'\left(z\right) = -z f_{0,1}\left(z\right) ]] [[BR]] [[BR]]
     96
     97  [[LatexEquation( L\left(\beta\right)=\underset{i}{\sum}w_{i}\left(y_{i}x_{i}^{t}\beta-\ln\left(1+e^{x_{i}^{t}\beta}\right)\right) )]]
     98
     99  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{j}}=\underset{i}{\sum}w_{i}\left(y_{i}\frac{f_{0,1}\left(x_{i}\beta\right)}{F_{0,1}\left(x_{i}\beta\right)}-\left(1-y_{i}\right)\frac{f_{0,1}\left(x_{i}\beta\right)}{1-F_{0,1}\left(x_{i}\beta\right)}\right)x_{ij} )]]
     100
     101  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial_{j}}=-\underset{k}{\sum}w_{k}f_{0,1}\left(x_{k}\beta\right)\left(y_{k}\frac{zF_{0,1}\left(x_{k}\beta\right)+f_{0,1}\left(x_{k}\beta\right)}{F_{0,1}^{2}\left(x_{k}\beta\right)}+\left(1-y_{k}\right)\frac{-z\left(1-F_{0,1}\left(x_{k}\beta\right)\right)+f_{0,1}\left(x_{k}\beta\right)}{\left(1-F_{0,1}\left(x_{k}\beta\right)\right)^{2}}\right)x_{ik}x_{jk} )]]