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Abstract

Let K be a polytope in Rn defined by m linear inequalities. We give a new Markov Chain
algorithm to draw a nearly uniform sample from K. The underlying Markov Chain is the first to
have a mixing time that is strongly polynomial when started from a “central” point x0. If s is the
supremum over all chords pq passing through x0 of |p−x0|

|q−x0| and ε is an upper bound on the desired
total variation distance from the uniform, it is sufficient to take O

(
mn

(
n log(sm) + log 1

ε

))
steps of the random walk. We use this result to design an affine interior point algorithm that
does a single random walk to solve linear programs approximately. More precisely, suppose
Q = {z

∣∣Bz ≤ 1} contains a point z such that cT z ≥ d and r := supz∈Q ‖Bz‖+ 1, where B is an
m× n matrix. Then, after τ = O

(
mn

(
n ln

(
mr
ε

)
+ ln 1

δ

))
steps, the random walk is at a point

xτ for which cTxτ ≥ d(1− ε) with probability greater than 1− δ. The fact that this algorithm
has a run-time that is provably polynomial is notable since the analogous deterministic affine
algorithm analyzed by Dikin has no known polynomial guarantees.

1 Introduction

We use ideas from interior point algorithms to define a random walk on a polytope. We call this
walk Dikin walk. The Markov Chain defining Dikin walk is invariant under affine transformations of
the polytope. Consequently, the complex interleaving of rounding and sampling present in previous
sampling algorithms for convex sets (see [6, 7, 16]) is unnecessary. The following are notable features
of Dikin walk.

1. The measures defined by the transition probabilities of Dikin walk are affine invariants, so
there is no dependence on R/r (where R is the radius of the smallest ball containing the
polytope K and r is the radius of the largest ball contained in K).

2. If K is an n-dimensional polytope defined by m linear constraints, the mixing time of the
Dikin walk is O(nm) from a warm start (i. e. if the starting distribution has a density bounded
above by a constant).

3. If the walk is started at the “analytic center” (which can be found efficiently by interior point
methods [20, 21]), it achieves a variation distance of ε in
O
(
mn

(
n logm+ log 1

ε

))
steps. This is strongly polynomial in the description of the polytope.

Previous sampling algorithms were applicable to convex sets specified in the following way. The
input consists of an n-dimensional convex set K circumscribed around and inscribed in balls of
radius r and R respectively. The algorithm has access to an oracle that when supplied with a point
in Rn answers “yes” if the point is in K and “no” otherwise.
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The first polynomial time algorithm for sampling convex sets appeared in [6]. It did a random
walk on a sufficiently dense grid. The dependence of its mixing time on the dimension was O∗(n23).
It resulted in the first randomized polynomial time algorithm to approximate the volume of a convex
set.

Another random walk that has been analyzed for sampling convex sets is known as the ball
walk, which does the following. Suppose the current point is xi. y is chosen uniformly at random
from a ball of radius δ centered at xi. If y ∈ K, xi+1 is set to K; otherwise xi+1 = xi. After many
successive improvements over several papers, it was shown in [7] that a ball walk mixes in O∗(nR

2

δ2
)

steps from a warm start if δ < r√
n

. A ball walk has not been proved to mix rapidly from any single
point. A third random walk analyzed recently is known as Hit-and-Run [12, 14]. This walk mixes
in O

(
n3(Rr )2 ln R

dε

)
steps from a point at a distance d from the boundary [14], where ε is the desired

variation distance to stationarity. Dikin walk is similar to ball walk except that Dikin ellipsoids
(defined later) are used instead of balls. Dikin walk is the first walk to mix in strongly polynomial
time from a central point such as the center of mass (for which s, as defined below, is O(n)) and the
analytic center (for which s = O(m)). Our main result related to the Dikin walk is the following.

Theorem 1. Let n be greater than some universal constant. Let K be an n-dimensional polytope
defined by m linear constraints and x0 ∈ K be a point such that s is the supremum over all chords pq
passing through x0 of |p−x0|

|q−x0| and ε > 0 be the desired variation distance to the uniform distribution.
Let τ > 7 × 108 × mn

(
n ln (20 s

√
m) + ln

(
32
ε

))
and x0, x1, . . . be a Dikin walk. Then, for any

measurable set S ⊆ K, the distribution of xτ satisfies
∣∣∣P[xτ ∈ S]− vol(S)

vol(K)

∣∣∣ < ε.

1.0.1 Running times

The mixing time for Hit-and-Run from a warm start is O
(
n2R2

r2

)
, while for Dikin walk this is

O(mn). Hit-and-Run takes more random walk steps to provably mix on any class of polytopes
where m = o

(
nR2

r2

)
. For polytopes with polynomially many faces, R/r cannot be O

(
n

1
2
−ε
)

(but

can be arbitrarily larger). Thus, m = o(n
(
R
r

)2) holds true for some important classes of polytopes,
such as those arising from the question of sampling contingency tables with fixed row and column
sums (where m = O(n)). Each step of Dikin walk can be implemented using O(mnγ−1) arithmetic
operations, γ < 2.376 being the exponent of matrix multiplication (see 2.1.1). One step of Hit-
and-Run implemented naively would need O(mn) arithmetic operations. Evaluating costs in this
manner, Hit-and-Run takes more random walk steps to provably mix on any class of polytopes
where mγ = o

(
n2R2

r2

)
. A sufficient condition for m = o

(
n3−γR2

r2

)
to hold is m = o(n4−γ).

1.1 Applications

1.1.1 Sampling lattice points in polytopes

While polytopes form a restricted subclass of the set of all convex bodies, algorithms for sampling
polytopes have numerous applications. It was shown in [8] that if an n dimensional polytope
defined by m inequalities contains a ball of radius Ω(n

√
logm), then it is possible to sample the

lattice points inside it in polynomial time by sampling the interior of the polytope and picking a
nearby lattice point. Often, combinatorial structures can be encoded as lattice points in a polytope,
leading in this way to algorithms for sampling them. Contingency tables are two-way tables that
are used by statisticians to represent bivariate data. A solution proposed in [4] to the frequently
encountered problem of testing the independence of two characteristics of empirical data involves
sampling uniformly from the set of two-way tables having fixed row and column sums. It was shown
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in [17] that under some conditions, this can be achieved in polynomial time by quantizing random
points from an associated polytope.

1.1.2 Linear Programming

We use this result to design an affine interior point algorithm that does a single random walk to
solve linear programs approximately. In this respect, our algorithm differs from existing random-
ized algorithms for linear programming such as that of Lovász and Vempala [15], which solves more
general convex programs. While optimizing over a polytope specified as in the previous subsection,
if m = O(n2−ε), the number of random steps taken by our algorithm is less than that of [15]. Given
a polytope Q containing the origin and a linear objective c, our aim is to find with probability
> 1− δ, a point y ∈ Q such that cT y ≥ 1− ε if there exists a point z ∈ Q such that cT z ≥ 1. We
first truncate Q using a hyperplane cT y = 1− ε̂, for ε̂ << ε and obtain Qε̂ = Q ∩ {y

∣∣cT y ≤ 1− ε̂}.
We then projectively transform Qε̂ to “stretch” it into a new polytope γ(Qε̂) where γ : y 7→ y

1−cT y .
Finally, we do a simplified Dikin walk (without the Metropolis filter) on γ(Qε̂) which approaches
close to the optimum in polynomial time. This algorithm is purely affine after one preliminary
projective transformation, in the sense that Dikin ellipsoids are used that are affine invariants but
not projective invariants. This is an important distinction in the theory of interior point methods
and the fact that our algorithm is polynomial time is notable since the corresponding deterministic
affine algorithm analyzed by Dikin [5, 23] has no known polynomial guarantees on its run-time. Its
projective counterpart, the algorithm of Karmarkar however does [9]. In related work [2], Belloni
and Freund have explored the use of randomization for preconditioning. While there is no “local”
potential function that is improved upon in each step, our analysis may be interpreted as using the
L2,µ norm (µ being the appropriate stationary measure) of the probability density of the kth point
as a potential, and showing that this reduces at each step by a multiplicative factor of (1 − Φ2

2 )
where Φ is the conductance of the walk on the transformed polytope. We use the L2,µ norm rather
than variation distance because this allows us to give guarantees of exiting the region where the
objective function is low before the relevant Markov Chain has reached approximate stationarity.
The main result related to algorithm (Dikin ) is the following.

Theorem 2. Let n be larger than some universal constant. Given a system of inequalities By ≤ 1,
a linear objective c such that the polytope

Q := {y : By ≤ 1 and |cT y| ≤ 1}

is bounded, and ε, δ > 0, the following is true. If ∃ z such that Bz ≤ 1 and cT z ≥ 1, then y, the
output of Dikin , satisfies

By ≤ 1

cT y ≥ 1− ε

with probability greater than 1− δ.

1.1.3 Strong Polynomiality

Let us call a point x central if ln s, where s is the function of x defined in Theorem 1, is polynomial
in m. The mixing time of Dikin walk both from a warm start, and from a starting point that is
central, is strongly polynomial in that the number of arithmetic operations depends only on m and
n. Previous Markov Chains for sampling convex sets (and hence polytopes) do not possess either of
these characteristics. In the setting of approximate Linear Programming that we have considered,
the numbers of iterations taken by known interior point methods such as those of Karmarkar [9],

3



x2

x5

x3

x1

x0

x4

x6

Dx0

Dx6Dx1

K

Figure 1: A realization of Dikin walk. Dikin ellipsoids Dx0 , Dx1 and Dx6 have been depicted.

Renegar [20], Vaidya [21] etc are strongly polynomial when started from a point that is central in
the above sense. The algorithm Dikin presented here is no different in this respect. The fact that
Dikin walk has a mixing time that is strongly polynomial from a central point such as the center
of mass, is related to two properties of Dikin ellipsoids listed below.

1.1.4 Dikin ellipsoids and their virtues

Let K be a polytope in n−dimensional Euclidean space given as the intersection of m halfspaces
aTi x ≤ 1, 1 ≤ i ≤ m. Defining A to be the m× n matrix whose ith row is aTi , the polytope can be
specified by Ax ≤ 1. Let x0 ∈ int(K) belong to the interior of K. Let

H(x) =
∑

1≤i≤m

aia
T
i

(1− aTi x)2

and ‖z − x‖2x := (z − x)TH(x)(z − x). The Dikin ellipsoid Dr
x of radius r for x ∈ K is the ellipsoid

containing all points z such that
‖z − x‖x ≤ r.

Fact 1. (1) Dikin ellipsoids are affine invariants in that if T is an affine transformation and
x ∈ K, the Dikin ellipsoid of radius r centered at the point Tx for the polytope T (K) is
T (Dr

x). This is easy to verify from their definition.

(2) For any interior point x, the Dikin ellipsoid centered at x, having radius 1, is contained in K.
This has been shown in Theorem 2.1.1 of [18]. Also, the Dikin ellipsoid at x having radius√
m contains Symx(K) := K ∩ {y

∣∣2x − y ∈ K}. This can be derived by an argument along
the lines of Theorem 4.

4



2 Randomly Sampling Polytopes

2.1 Preliminaries

For two vectors v1, v2, let
〈
v1, v2

〉
x

= vT1 H(x)v2. For x ∈ K, we denote by Dx, the Dikin ellipsoid
of radius 3

40 centered at x. Dikin ellipsoids have been studied in the context of optimization [5] and
have recently been used in online learning [1]. The second property mentioned in the subsection
below implies that the Dikin walk does not leave K.

The “Dikin walk” is a “Metropolis” type walk which picks a move and then decides whether
to “accept” the move and go there or “reject” and stay. The transition probabilities of the Dikin
walk are listed below. When at x, one step of the walk is made as follows.

1. Flip an unbiased coin. If Heads, stay at x.

2. If Tails pick a random point y from Dx.

3. If x /∈ Dy, then reject y (stay at x);
if x ∈ Dy, then accept y with probability

min
(

1, vol(Dx)
vol(Dy)

)
= min

(
1,
√

detH(y)
detH(x)

)
.

Therefore,

P[x→ y] =


min

(
1

2 vol(Dx) ,
1

2 vol(Dy)

)
,

if y ∈ Dx and x ∈ Dy;
0, otherwise.

and P[x→ x] = 1−
∫
y dP[x→ y].

2.1.1 Implementation of a Dikin step

Let K be the set of points satisfying the system of inequalities Ax ≤ 1. H(x) = ATD(x)2A where
D(x) is the diagonal matrix whose ith diagonal entry dii(x) = 1

1−aTi x
.

We can generate a Gaussian vector v such that E[vvT ] = (ATD2A)−1 by the following procedure.
Let u be a random m-vector from a Gaussian distribution whose covariance matrix is Id. Find v
that satisfies the linear equations:

DAv = z

ATD(z − u) = 0,

or equivalently,
ATD2Av = ATDu.

Allowing (DA)† to be the Moore-Penrose pseudo-inverse of DA,

(DA)†(z − u) = 0⇔ (z − u) ⊥ column span(DA)

⇔ ATD(z − u) = 0.

Thus, EvvT = (DA)†EzzT (DA)†T . z is the orthogonal projection of u onto the column span of
DA,
therefore (DA)†EzzT (DA)†T = H(x)−1. We can now generate a random point from the Dikin
ellipsoid by scaling v/‖v‖x appropriately. The probability of accepting a Dikin step, is either 0
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or the minimum of 1 and ratio of two determinants. Two matrix-vector products suffice to test
whether the original point lies in the Dikin ellipsoid of the new one. By results of Baur and Strassen
[3], the complexity of solving linear equations and of computing the determinant of an n×n matrix
is O(nγ). The most expensive step, the computation of ATD(x)2A can be acheived using mnγ−1,
by partitioning a padded extension of ATD into ≤ m+n−1

n square matrices. Thus, all the operations
needed for one step of Dikin walk can be computed using O(mnγ−1) arithmetic operations where
γ < 2.377 is the exponent for matrix multiplication.

2.2 Isoperimetric inequality

Given interior points x, y in a polytope K, suppose p, q are the ends of the chord in K containing
x, y and p, x, y, q lie in that order. Then we denote |x−y||p−q||p−x||q−y| by σ(x, y). ln(1 + σ(x, y)) is a metric

known as the Hilbert metric, and given four collinear points a, b, c, d, (a : b : c : d) = (a−c)·(b−d)
(a−d)·(b−c) is

known as the cross ratio.
The theorem below was proved by Lovász in [12].

Theorem 3 (Lovász). Let S1 and S2 be measurable subsets of K. Then,

vol(K \ S1 \ S2) vol(K) ≥ σ(S1, S2) vol(S1) vol(S2).

2.3 Dikin norm and Hilbert metric

Theorem 4 relates the Dikin norm to the Hilbert metric. The Dikin norms can be used to define a
Riemannian manifold by using the associated bilinear form < ·, · >x to construct a metric tensor.
Dikin walk is a random walk analogous to the “ball walk” on such a manifold.

Observation 1. The isoperimetric properties of this manifold can be deduced from those of the
Hilbert metric, and in fact, Theorem 3 and Theorem 4 together imply that the weighted Cheeger
constant of this manifold is bounded below by 1

2
√
m
.

Theorem 4. Let x, y be interior points of K. Then,

σ(x, y) ≥ ‖x− y‖x√
m

.

Proof. It is easy to see that we can restrict attention to the line ` containing x, y. We may also
assume that x = 0 after translation. So now bi ≥ 0. Let ci be the component of ai along `; we
may view ci, y as real numbers with ` as the real line now. K ∩ ` = {y : ciy ≤ bi} (where bi had
been taken to be 1). Dividing constraint i by |ci|, we may assume that |ci| = 1. After renumbering
constraints so that b1 = min{bi

∣∣ci = −1} and b2 = min{bi
∣∣ci = 1}, we have K ∩ ` = [−b1, b2]. Also

‖x− y‖2x = y2
∑
i

1
b2i
.

Without loss of generality, assume that y ≥ 0. [The proof is symmetric for y ≤ 0.] Then, σ(x, y) =
y(b1+b2)
b1(b2−y) , which is ≥ ymaxi(1/|bi|). This is in turn ≥ ‖x−y‖x√

m
.

2.4 Geometric and probabilistic distance

Let the Lebesgue measure be denoted λ. The total variation distance between two distributions
π1 and π2 is d(π1, π2) := supS |π1(S) − π2(S)| where S ranges over all measurable sets. Let the
marginal distributions of transition probabilities starting from a point u be denoted Pu. Let us fix
r := 3/40 for the remainder of this chapter. The main lemma of this section is stated below.
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Lemma 1. Let x, y be points such that σ(x, y) ≤ 3
400
√
mn

. Then, the total variation distance

between Px and Py is less than 1− 13
200 + o(1).

Proof. Let us fix the convention that dPy
dPx

(x) := 0 and dPy
dPx

(y) := +∞. If x → w is one step of the
Dikin walk,

d(Px, Py) = 1− Ew
[
min

(
1,
dPy
dPx

(w)
)]

.

It follows from Lemma 2 that

Ew
[
min

(
1,
dPy
dPx

(w)
)]
≥ min

(
1,

volDx

vol(Dy)

)
P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] .

It follows from Lemma 4 that

min
(

1,
vol(Dx)
volDy

)
P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] ≥ (1)

e−
r
5 P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] . (2)

Let Ex denote the event that

0 < max
(
‖x− w‖2w, ‖x− w‖2x

)
≤ r2

(
1− 1

n

)
,

Ey denote the event that max (‖y − w‖w, ‖y − w‖y) ≤ r and Evol denote the event that vol(Dw) ≥
e4r vol(Dx). The complement of an event E shall be denoted E.

The probability of Ey when x → w is a transition of Dikin walk can be bounded from below

by
(
e−4r

2

)
P
[
Ey ∧ Ex ∧ Evol

]
where w is chosen uniformly at random from Dx. It thus suffices to

find a lower bound for P
[
Ey ∧ Ex ∧ Evol

]
where w is chosen uniformly at random from Dx, which

we proceed to do. Let erf(x) denote the well known error function 2√
π

∫ x
0 e
−t2dt and erfc(x) :=

1− erf(x).

P
[
Ey ∧ Ex ∧ Evol

]
≥ (3)

P [Ey ∧ Ex]− P [Evol] . (4)

Lemma 3 implies that P [Evol] ≤ erfc(2)
2 + o(1). Let E1

x be the event that

‖x− w‖2x ≤ r2

(
1− 1

n

)
.

As a consequence of Lemma 5,

P [Ex] + o(1) ≥

(
1− 3

√
2r

2

)
P
[
E1
x

]
≥

(
1− 3

√
2r

2
√
e

)
− o(1). (5)

Lemma 6 and Lemma 7 together tell us that

P
[
Ey

∣∣∣Ex] ≥ 1−
(

4r2 + erfc(2) + o(1)
1− 3

√
2r

)
−
(

4r2 + erfc(3/2) + o(1)
1− 3

√
2r

)
(6)

= 1−

(
8r2 + erfc(2) + erfc(3

2) + o(1)

1− 3
√

2r

)
. (7)
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Putting (5) and (7) together gives us that

P [Ey ∧ Ex] = P
[
Ey

∣∣∣Ex]P [Ex] (8)

≥ 1− 3
√

2r
2
√
e
−

(
8r2 + erfc(2) + erfc(3

2)
2
√
e

)
− o(1). (9)

Putting together (2), (4) and (9), we see that if x→ w is a transition of the Dikin walk,

Ew
[
min

(
1,
dPy
dPx

(w)
)]
≥ e−

21r
5

4
√
e

(
1− (3

√
2r + 8r2 + erfc(2)(1 +

√
e) + erfc(

3
2

))
)
− o(1).

For our choice of r = 3/40, this evaluates to more than 13
200 − o(1).

Since Dikin ellipsoids are affine-invariant, we shall assume without loss of generality that x is
the origin and the Dikin ellipsoid at x is the Euclidean unit ball of radius r. This also means that
in system of coordinates, the local norm ‖ · ‖x = ‖ · ‖o is the Euclidean norm ‖ · ‖ and the local
inner product

〈
·, ·
〉
x

=
〈
·, ·
〉
o

is the usual inner product
〈
·, ·
〉
. On occasion we have used a · b to

signify
〈
a, b
〉
.

Lemma 2. Let w ∈ supp(Px) \ {x, y} and y ∈ Dw and w ∈ Dy. Then,

dPy
dPx

(w) ≥ min
(

1,
vol(Dx)
vol(Dy)

)
.

Proof. Under the hypothesis of the lemma,

dPy
dPx

(w) =
min

(
1

vol(Dy) ,
1

volDw

)
min

(
1

vol(Dx) ,
1

volDw

)
=

min
(

vol(Dw)
vol(Dy) , 1

)
min

(
vol(Dw)
vol(Dx) , 1

) .
The above expression can be further simplified by considering two cases.

1. Suppose min
(

vol(Dw)
vol(Dy) , 1

)
= 1, then

min
(

volDw
vol(Dy) , 1

)
min

(
vol(Dw)
vol(Dx) , 1

) ≥ 1.

2. Suppose min
(

vol(Dw)
vol(Dy) , 1

)
= vol(Dw)

vol(Dy) , then

min
(

vol(Dw)
vol(Dy) , 1

)
min

(
vol(Dw)
vol(Dx) , 1

) ≥ vol(Dx)
vol(Dy)

.

Therefore,

dPy
dPx

(w) ≥ min
(

1,
vol(Dx)
volDy

)
.

8



Lemma 3. Let w be chosen uniformly at random from Dx. The probability that vol(Dx) ≤
e2rc vol(Dw) is greater or equal to 1− erfc(c)

2 − o(1), i. e.

P
[

vol(Dw)
vol(Dx)

≤ e2rc

]
≥ 1− erfc (c)

2
− o(1).

Proof. By Lemma 13, ln( 1
vol(Dx)) is a convex function. Therefore,

ln vol(Dw)− ln vol(Dx) ≤ ∇ ln(
1

vol(Dx)
) · (w − x).

By Lemma 12, ‖∇ ln( 1
vol(Dx))‖ ≤ 2

√
n. Therefore,

∇ ln(
1

vol(Dx)
) · (w − x) ≤ 2r

(√
n∇ ln( 1

vol(Dx)) · (w − x)

‖∇ ln( 1
vol(Dx))‖‖w − x‖

)
As stated in Theorem 5, when the dimension n→∞,

√
n∇ ln( 1

vol(Dx)) · (w − x)

‖∇ ln( 1
vol(Dx))‖‖w − x‖

converges in distribution to a standard Gaussian random variable whose mean is 0 and variance is
1. Therefore,

P

[√
n∇ ln( 1

vol(Dx)) · (w − x)

‖∇ ln( 1
volDx

)‖‖w − x‖
≤ c

]
≥ 1 + erf(c)

2
− o(1).

This implies that

P
[

vol(Dw)
vol(Dx)

≤ ec
]
≥ P

[
∇ ln(

1
vol(Dx)

) · (w − x) ≤ c
]

≥

(
1 + erf

(
c
2r

)
2

)
− o(1).

Lemma 4.

ln
(

vol(Dy)
vol(Dx)

)
≤ nσ(x, y).

Proof. Suppose pq is a chord and p, x, y, q appear in that order. By Theorem 8,

ln
(

vol(Dy)
vol(Dx)

)
≤ ln

(
|p− y|n

|p− x|n

)
≤ nσ(x, y).

Lemma 5. Let w be chosen uniformly at random from Dx. Then,

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2

(
1− 1

n

)]
≥ 1− 3

√
2r

2
− o(1).
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Proof. Let E1
x be the event that

‖x− w‖2x ≤ r2

(
1− 1

n

)
.

We set c to 3
√

2r in Lemma 8 and see that

P
[
‖x− w‖2w + ‖x− w‖22x−w ≥ 2r2

(
1− 1

n

) ∣∣∣E1
x

]
≤ 3
√

2r + o(1).

If ‖x − w‖2w + ‖x − w‖22x−w ≤ 2r2
(
1− 1

n

)
, then either ‖x − w‖2w or ‖x − w‖22x−w must be less or

equal to r2
(
1− 1

n

)
.

Lemma 6. Let σ(x, y) ≤ 3
400
√
mn

. Then, if w is chosen uniformly at random from Dx,

P
[
‖y − w‖y ≥ r

∣∣∣max
(
‖x− w‖2x, ‖x− w‖2w

)
≤ r2

(
1− 1

n

)]
≤ 4r2 + erfc(2) + o(1)

1− 3
√

2r
.

Proof. It follows from Lemma 10, after substituting 1 for η and 2 for η1 that

P
[
‖y − w‖y ≥ r

∣∣∣‖x− w‖2x ≤ r2

(
1− 1

n

)]
≤ 2r2 +

erfc(2)
2

+ o(1).

This lemma follows using the upper bound from Lemma 5 for

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2

(
1− 1

n

)]
.

An application of Theorem 4 completes the proof.

Lemma 7. Suppose σ(x, y) ≤ 3
400
√
mn

. Let w be chosen uniformly at random from Dx. Then,

P
[
‖y − w‖w ≥ r

∣∣∣max(‖x− w‖2w, ‖x− w‖2x) ≤ r2

(
1− 1

n

)]
≤ 4r2 + erfc(3/2) + o(1)

1− 3
√

2r
.

Proof. Substituting c = 1 in Lemma 9, we see that

P
[
‖y − w‖2w − ‖x− w‖2w ≥ ψ1

∣∣∣‖x− w‖2x ≤ r2(1− c

n
)
]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

This implies that

P
[
‖y − w‖2w − ‖x− w‖2w ≥

r

n

∣∣∣‖x− w‖2x ≤ r2

(
1− 1

n

)]
≤ 2r2 +

erfc(3/2)
2

+ o(1).

10



This lemma follows using the lower bound from Lemma 5 for

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2

(
1− 1

n

)]
.

The following theorem has the geometric interpretation that the probability distribution ob-
tained by orthogonally projecting a random vector vn from an n-dimensional ball of radius

√
n onto

a line converges in distribution to the standard mean zero, variance 1, normal distribution N [0, 1].
This was known to Poincaré, and is a fact often mentioned in the context of measure concentration
phenomena, see for example [11].

Theorem 5 (Poincaré). Let vn be any n-dimensional vector and hn be a random vector chosen
uniformly from the n-dimensional unit Euclidean ball. Then, as n → ∞,

√
n<vn,hn>
‖vn‖‖hn‖ converges in

distribution to a zero-mean Gaussian whose variance is 1, i. e.N [0, 1].

Let

ψ1 :=
‖y − x‖2x
(1− r)2

+
(3 + 2

√
6)r‖y − x‖x√
n

.

Lemma 8. Let v be chosen uniformly at random from Dx and c be a positive constant. Then,

P

[
‖x− v‖2v + ‖x− v‖22x−v ≥ 2r2

(
1−

(c− 18r2

c )
n

)]
≤ c+ o(1).

Proof. Let the ith constraint be aTi x ≤ 1 for all i ∈ {1, . . . ,m}. Let x − v be denoted h. In the
present frame, for any vector v, ‖v‖x = ‖v‖.

‖x− v‖2v + ‖x− v‖22x−v =
∑
i

(aTi h)2

(1− aTi h)2
+
∑
i

(aTi h)2

(1 + aTi h)2
(10)

In the present coordinate frame
∑

i aia
T
i = I. Consequently for each i,

E[(aTi h)2] =
‖ai‖2E[‖h‖2]

n
(11)

≤ r2

n
. (12)

∑
i

(
(aTi h)2

2(1− aTi h)2
+

(aTi h)2

2(1 + aTi h)2

)
=

∑
i

(aTi h)2

(
1 + (aTi h)2

(1− (aTi h)2)2

)
(13)

=
∑
i

(
(aTi h)2 +

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2

)
= ‖h‖2x +

∑
i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2
. (14)

In the present coordinate frame
∑

i aia
T
i = I. Consequently for each i,

E
[

(aTi h)2

‖ai‖2‖h‖2

]
=

1
n
. (15)

11



By Theorem 5, the probability that |aTi h| ≥ n−
1
4 is O(e−

√
n/2). |aTi h| is ≤ ‖aTi ‖r, which is less

than 1
2 . This allows us to write

E
[

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2

]
= 3E[(aTi h)4](1 + o(1)), (16)

and so

E

[∑
i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2

]
=

∑
i

3E[(aTi h)4](1 + o(1)). (17)

Next, we shall find an upper bound on E[
∑

i(a
T
i h)4]. The length of h and its direction are inde-

pendent, therefore

E

[∑
i

(aTi h)4

]
=

∑
i

‖ai‖4E[‖h‖4]E
[

(aTi h)4

‖ai‖4‖h‖4

]
. (18)

A direct integration by parts tells us that if the distribution of X is N [0, 1], then E[X4] = 3.
Therefore,

E
[

(aTi h)4

‖ai‖4‖h‖4

]
=

3 + o(1)
n2

. (19)

E[‖h‖4] is equal to r4(1 + o(1)) and so

E

[∑
i

(aTi h)4

]
=

∑
i

(
3 + o(1)
n2

)
‖ai‖4r4. (20)

This implies that

E

[∑
i

3(aTi h)4

(1− (aTi h)2)2

]
=

9 + o(1)
n2

∑
i

‖ai‖4r4 (21)

≤ 9 + o(1)
n2

∑
i

‖ai‖2r4 (22)

=
(9 + o(1))r4

n
. (23)

In (22), we used the fact that
∑

i aia
T
i = I and so ‖ai‖2 ≤ 1 for each i. Together, Markov’s

inequality and (23) yield the following.

P

[∑
i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2
≥ c2r

4

n

]
≤ P

[∑
i

3(aTi h)4

(1− (aTi h)2)2
≥ c2r

4

n

]
(24)

≤ 9 + o(1)
c2

. (25)

Also,

P[‖h‖2x ≥ r2(1− c1

n
)] = P[‖h‖nx ≥ rn(1− c1

n
)n/2] (26)

≤ 1− e−
c1
2 + o(1). (27)

12



We infer from (25) and (27) that

P

[
‖h‖2x +

∑
i

3(aTi h)4 − (aTi h)6

(1− (aTi h)2)2
≥ r2(1− c1 − c2r

2

n
)

]
≤ 1− e−

c1
2 +

9
c2

+ o(1)

≤ c1

2
+

9
c2

+ o(1). (28)

Setting c1 to c and c2 to 18
c proves the lemma.

Let Ecx be the event that ‖x− w‖2x ≤ r2(1− c
n).

Lemma 9. Let w be a point chosen uniformly at random from Dx. Then, for any positive constant
c, independent of n,

P
[
‖y − w‖2w − ‖x− w‖2w ≥ ψ1

∣∣∣Ecx]
≤ 2r2 +

erfc(3/2)
2

+ o(1).

Proof. ‖y‖2w can be bounded above in terms of ‖y‖o as follows.

‖y‖2w ≤ yT

(∑
i

aia
T
i

(1− aTi w)2

)
y (29)

≤
(

sup
i

1
(1− aTi w)2

)∑
i

yTaia
T
i y. (30)

For each i, ‖ai‖ ≤ 1, therefore(
sup
i

1
(1− aTi w)2

)∑
i

yTaia
T
i y ≤ ‖y‖2o

(1− r)2
. (31)

Let Ecw be the event that ‖w‖2o ≤ 1− c
n .

By Theorem 5,

P
[
(−2

〈
y, w

〉
o
) ≥ 2rη1‖y‖o√

n

∣∣∣Ecw] ≤ 1− erf(η1)
2

+ o(1). (32)

(
〈
y, w

〉
o
−
〈
y, w

〉
w

)2 can be bounded above using the Cauchy-Schwarz inequality as follows.

(
〈
y, w

〉
o
−
〈
y, w

〉
w

)2 =

(
wT

(
1−

∑
i

aia
T
i

(1− aTi w)2

)
y

)2

=

(∑
i

wTai((1− aTi w)2 − 1)aTi y
(1− aTi w)2

)2

≤

(∑
i

(
wTai((1− aTi w)2 − 1)

)2
(1− aTi w)4

)(∑
i

(aTi y)2

)
.

Let κ be a standard one-dimensional Gaussian random variable whose variance is 1 and mean is 0
( i. e. having distribution N [0, 1]). Since r < 1

2 and each ‖ai‖ = ‖ai‖o is less or equal to 1, it follows
from Theorem 5 that conditional on Ecw,(

nwTai((1− aTi w)2 − 1)
)2

4r2‖ai‖2(1− aTi w)4

13



converges in distribution to the distribution of κ4, whose expectation can be shown using integration
by parts to be 3. So,

E

[∑
i

(
wTai((1− aTi w)2 − 1)

)2
(1− aTi w)4

∣∣∣Ecw
]
≤

∑
i

(
4
n2

)
‖ai‖4or4(3 + o(1))

≤
(

12 + o(1)
n2

)
r4
∑
i

‖ai‖2o

=
(12 + o(1))r4

n
.

Thus by Markov’s inequality,

P

[∑
i

(
wTai((1− aTi w)2 − 1)

)2
(1− aTi w)4

≥ 12η2r
4

n

∣∣∣Ecw
]
≤ 1 + o(1)

η2
. (33)

∑
i(a

T
i y)2 is equal to ‖y‖2o. Therefore (33) implies that

P
[
(
〈
y, w

〉
o
−
〈
y, w

〉
w

)2 ≥ 12η2r
4‖y‖2o
n

]
≤ 1 + o(1)

η2
. (34)

Putting (32) and (34) together, we see that

P

[
−2
〈
y, w

〉
w
≥ 2rη1‖y‖o√

n
+ 2

√
12η2r4‖y‖2o

n

∣∣∣∣∣Ecw
]
≤ 1− erf(η1)

2
+

1 + o(1)
η2

(35)

Conditional on Ecw, ‖w‖2w is less or equal to r(1− c
n).

Therefore, using erfc(x) to denote 1− erf(x),

P
[
‖y − w‖2w − ‖w‖2w ≥

‖y‖2o
(1− r)2

+
2r‖y‖o√

n

(
η1 + r

√
12η2

) ∣∣∣Ecw] ≤ η−1
2 +

erfc(η1)
2

+ o(1).

Setting η1 = 3/2 and η2 = 1
2r2

, gives

P
[
‖y − w‖2w − ‖w‖2w ≥

∣∣∣Ecw] ≤ 2r2 +
erfc(3/2)

2
+ o(1). (36)

Lemma 10. Let c be a positive constant. Let

ψ2 := ‖y − x‖2y +
2rη1‖y − x‖x√

n
+

2η‖y − x‖x√
n

(√
3r + ‖y − x‖x

)
.

If w is a point chosen uniformly at random from Dx, for any positive constants η and η1, Then,

P
[
‖y − w‖2y − ‖x− w‖2x ≥ ψ2

∣∣∣Ecw]
≤ 2r2

η2
+

erfc(η1)
2

+ o(1).
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Proof.

‖y − w‖2y = ‖y‖2y + ‖w‖2y − 2
〈
w, y

〉
y

(37)

≤ ‖y‖2y + ‖w‖2o (38)

+
√

(‖w‖2y − ‖w‖2o)2 − 2
〈
w, y

〉
o

+ 2
√

(
〈
w, y

〉
o
−
〈
w, y

〉
y
)2. (39)

We shall obtain probabilistic upper bounds on each term in (39).

(‖w‖2y − ‖w‖2o)2 =

(
wT

(∑
i

aia
T
i

(
1− (1− aTi y)2

(1− aTi y)2

))
w

)2

(40)

≤

(∑
i

(wTai)4

)(∑
i

(
1− (1− aTi y)2

(1− aTi y)2

)2
)

(41)

=

(∑
i

(wTai)4

)(∑
i

4
(
aTi y

)2
(1 + o(1))

)
(42)

= (4 + o(1)) ‖y‖2o
∑
i

(wTai)4. (43)

In inferring (42) from (41) we have used the fact that ‖y‖o is O( 1√
n

) which is o(1). As was stated
in (19) in slightly different terms,

E
[
(wTai)4

]
=
‖ai‖4r4(3 + o(1))

n2
.

Therefore by Markov’s inequality, for any constant c,

E

[∑
i

(wTai)4
∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
=

∑
i

‖ai‖4r4(3 + o(1))
n2

≤ r4(3 + o(1))
n2

∑
i

‖ai‖2

=
r4(3 + o(1))

n
.

Therefore,

P
[
(‖w‖2y − ‖w‖2o)2 ≥ η2 12‖y‖2or4

n

]
≤ 1 + o(1)

η2
. (44)

By Theorem 5, as n→∞, the distribution of
√
n
〈
w,y
〉
o

r‖y‖o converges in distribution to N [0, 1]. There-
fore

P
[
(−2

〈
w, y

〉
o
) ≥ 2η1r‖y‖o√

n

∣∣∣‖w‖2o ≤ r2(1− c

n
)
]
≤ erfc(η1)

2
+ o(1). (45)
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Finally, we need similar tail bounds for (
〈
w, y

〉
o
−
〈
w, y

〉
y
)2. Note that

(
〈
w, y

〉
o
−
〈
w, y

〉
y
)2 =

(
wT

(∑
i

aia
T
i

(
1− (1− aTi y)2

(1− aTi y)2

))
y

)2

(46)

≤

(∑
i

(wTaiaTi y)2

)(∑
i

(
1− (1− aTi y)2

(1− aTi y)2

)2
)

(47)

=

(∑
i

(wTaiaTi y)2

)(∑
i

(4 + o(1))(aTi y)2

)
(48)

= (4 + o(1))

(∑
i

(wTaiaTi y)2

)
‖y‖2o. (49)

It suffices now to obtain a tail bound on
∑

i(w
Taia

T
i y)2. By Theorem 5,

E

[∑
i

(wTaiaTi y)2
∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
≤

(∑
i

‖aiaTi y‖2
)
r2(1 + o(1))

n

≤

(∑
i

(aTi y)2

)
r2(1 + o(1))

n

≤ ‖y‖2or2(1 + o(1))
n

.

Therefore,

P
[
(
〈
w, y

〉
o
−
〈
w, y

〉
y
)2 ≤ 4η2‖y‖4or2

n

]
≤ 1 + o(1)

η2
. (50)

Putting together (44), (45) and (50), we see that

P
[
‖y − w‖2y − ‖w‖2o ≥ ‖y‖2y +

2η‖y‖o√
n

(√
3r +

rη1

η
+ ‖y‖o

) ∣∣∣Ecw] ≤ 2r2

η2
+

erfc(η1)
2

+ o(1).

The following is a generalization of the Cauchy-Schwarz inequality that takes values in a cone
of semidefinite matrices where inequality is replaced by dominance in the semidefinite cone. It will
be used to prove Lemma 12 and may be of independent interest.

Lemma 11 (Semidefinite Cauchy-Schwartz). Let
α1, . . . , αm be reals and A1, . . . , Am be r × n matrices. Let B 4 C signify that B is dominated by
C in the semidefinite cone. Then(

m∑
i=1

αiAi

)(
m∑
i=1

αiAi

)T
4

(
m∑
i=1

α2
i

)(
m∑
i=1

AiA
T
i

)
. (51)

Proof. For each i and j,

0 4 (αjAi − αiAj) (αjAi − αiAj)T
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Therefore,

0 4
1
2

m∑
i=1

m∑
j=1

(αjAi − αiAj) (αjAi − αiAj)T

=

(
m∑
i=1

α2
i

)(
m∑
i=1

AiA
T
i

)
−

(
m∑
i=1

αiAi

)(
m∑
i=1

αiAi

)T

We shall obtain an upper bound of 2
√
n on

‖∇ ln(
1

volDx
)‖
∣∣∣
x=o

= ‖∇ ln detH‖
∣∣∣
o
.

Lemma 12. ‖∇ ln detH|x‖x ≤ 2
√
n.

Proof. In our frame, ∑
aia

T
i = I, (52)

where I is the n× n identity matrix, and for any vector v,

‖v‖o = ‖v‖. (53)

If X is a matrix whose `2 → `2 norm is less than 1, log(I +X) can be assigned a unique value by
equating it with the power series

∞∑
i=1

(−1)i−1X
i

i
.

Using this formalism when y is in a small neighborhood of the identity.

ln detH(y) = trace lnH(y). (54)

In order to obtain an upper bound on ‖∇ ln detH‖ at o, it suffices to uniformly bound
∣∣∂ ln detH

∂h

∣∣
along all unit vectors h, since

‖∇ ln detH‖ = sup
‖h‖=1

∣∣ ∂
∂h

trace lnH
∣∣. (55)

[
∂

∂h
trace lnH

] ∣∣∣∣∣
o

= lim
δ→0

(
trace ln

(∑ aia
T
i

(1−δaTi h)2

)
− ln I

)
δ

(56)

=
∑
i

2(aTi h)(trace aiaTi ) (57)

= 2
∑
i

‖ai‖2aTi h. (58)
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The Semidefinite Cauchy-Schwarz inequality from Lemma 11 gives us the following.

(
∑
i

‖ai‖2ai)(
∑
i

‖ai‖2aTi ) 4 (
∑
i

‖ai‖4)(
∑
i

aia
T
i ) (59)

∑
i aia

T
i = I, so the magnitude of each vector ai must be less or equal to 1, and

∑
i ‖ai‖2 must

equal n.
Therefore

(
∑
i

‖ai‖4)(
∑
i

aia
T
i ) = (

∑
i

‖ai‖4)I (60)

4 (
∑
i

‖ai‖2)I (61)

= nI (62)

(59) and (62) imply that

(
∑
i

‖ai‖2ai)(
∑
i

‖ai‖2aTi ) 4 nI. (63)

(55), (58) and (63) together imply that

‖∇ ln detH‖ ≤ 2
√
n. (64)

The following is due to P. Vaidya [22].

Lemma 13. ln detH is a convex function.

Proof. Let ∂
∂h denote partial differentiation along a unit vector h. Recall that

∑
i aia

T
i = I.

∂2 ln detH
(∂h)2

∣∣∣
o

= lim
δ→0

1
δ2

trace ln
((∑ aia

T
i

(1− δaTi h)2

)(∑ aia
T
i

(1 + δaTi h)2

))

= lim
δ→0

trace
(

ln
(∑

i aia
T
i (
∑

j≥0(j + 1)(δaTi h)j)
))

δ2

+
trace

(
ln
(∑

i aia
T
i (
∑

j≥0(j + 1)(−δaTi h)j)
))

δ2

= lim
δ→0

trace
∑

k≥1
(−1)k−1

k

(∑
i aia

T
i (
∑

j≥1(j + 1)(δaTi h)j)
)k

δ2

+
trace

∑
k≥1

(−1)k−1

k

(∑
i aia

T
i (
∑

j≥1(j + 1)(−δaTi h)j)
)k

δ2
.
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The only terms in the numerators of the above limit that matter are those involving δ2. So this
simplifies to

2
∑
i

trace aiaTi (aTi h)2 = 2
∑
i

‖ai‖2(aTi h)2

≥ 2
∑
i

(aTi h)4

≥
2
(∑

i(a
T
i h)2

)2
m

=
2
m
.

This proves the lemma.

2.5 Conductance and mixing time

The proof of the following theorem is along the lines of Theorem 11 in [12].

Theorem 6. Let n be greater than some universal constant. Let S1 and S2 := K \S1 be measurable
subsets of K. Then, ∫

S1

Px(S2)dλ(x) ≥ 6
105
√
mn

min ( vol(S1), vol(S2)) .

Proof. Let ρ be the density of the uniform distribution on K. We shall use ρ in some places
where it is seemingly unnecessary because, then, most of this proof transfers verbatim to a proof
of Theorem 11 as well. For any x 6= y ∈ K,

ρ(y)
dPy
dλ

(x) = ρ(x)
dPx
dλ

(y),

therefore ρ is the stationary density of the Markov chain. Let δ = 3
400
√
mn

and ε = 13
200 . Let

S′1 = S1 ∩ {x
∣∣ρ(x)Px(S2) ≤ ε

2 vol(K)} and S′2 = S2 ∩ {y
∣∣ρ(y)Py(S1) ≤ ε

2 vol(K)}. By the reversibility
of the chain, which is easily checked,∫

S1

ρ(x)Px(S2)dλ(x) =
∫
S2

ρ(y)Py(S1)dλ(y).

If x ∈ S′1 and y ∈ S′2 then∫
K

min
(
ρ(x)

dPx
dλ

(w), ρ(y)
dPy
dλ

(w)
)
dλ(w) <

ε

vol(K)
.

For sufficiently large n, Lemma 1 implies that σ(S′1, S
′
2) ≥ δ. Therefore Theorem 3 implies that

π(K \ S′1 \ S′2) ≥ δπ(S′1)π(S′2).

First suppose π(S′1) ≥ (1− δ)π(S1) and π(S′2) ≥ (1− δ)π(S2). Then,∫
S1

Px(S2)dρ(x) ≥ επ(K \ S′1 \ S′2)
2

≥ εδπ(S′1)π(S′2)
2

≥
(

(1− δ)2εδ

8

)
min(π(S1), π(S2))
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and we are done. Otherwise, without loss of generality, suppose π(S′1) ≤ (1− δ)π(S1). Then∫
S1

Px(S2)dρ(x) ≥ εδ

2
π(S1)

and we are done.

The following theorem was proved in [13].

Theorem 7 (Lovász-Simonovits). Let µ0 be the initial distribution for a lazy reversible ergodic
Markov chain whose conductance is Φ and stationary measure is µ, and µk be the distribution of
the kth step. Let M := supS

µ0(S)
µ(S) where the supremum is over all measurable subsets S of K.

Then, for all such S,

|µk(S)− µ(S)| ≤
√
M

(
1− Φ2

2

)k
.

We now in a position to prove the main theorem regarding Dikin walk, Theorem 1.

of Theorem 1. Let t be the time when the first proper move is made. P[t ≥ t′
∣∣t ≥ t′ − 1] ≤

1 − 13
200 + o(1) by Lemma 1 applied when x = x0 and y approaches x0. Therefore when n is

sufficiently large,

P

[
t <

ln( ε2)
ln(1− 6

100)

]
≥ 1− ε

2
.

Let µk be the distribution of xk and µ be the stationary distribution, which is uniform. Let ρk and
ρ likewise be the density of µk and ρ = 1

vol(K) the density of the uniform distribution. We shall
now find an upper bound for ρk+t

ρ . For any x ∈ K, ρt(x) ≥ 100
6 vol(Dx) by Lemma 1, applied when

x = x0 and y approaches x0. By (2) in Fact 1 vol(Dx)
vol(K) ≥

(
r√

2ms

)n
, which implies that

sup
S⊆K

µt(S)
µ(S)

= sup
x∈K

ρt(x)
ρ

(65)

≤

(√
2ms

r

)n(
100
6

)
. (66)

The theorem follows by plugging in Equation 66 and the lower bound on the conductance of Dikin
walk given by Theorem 6 into Theorem 7.

3 Affine algorithm for linear programming

We shall consider problems of the following form. Given a system of inequalities By ≤ 1, a linear
objective c such that the polytope

Q := {y : By ≤ 1 and |cT y| ≤ 1}

is bounded, and ε, δ > 0 the algorithm is required to do the following.

• If ∃ y such that By ≤ 1 and cT y ≥ 1, output y such that By ≤ 1 and cT y ≥ 1 − ε with
probability greater than 1− δ.
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Figure 2: The effect of the projective transformation γ.

Any linear program can be converted to such a form, either by the sliding objective method or by
combining the primal and dual problems and using the duality gap added to an appropriate slack
variable as the new objective (see [10] and references therein). Before the iterative stage of the al-
gorithm which is purely affine, we need to transform the problem using a projective transformation.
Let s ≥ sup

y∈Q
‖By‖+ 1, and

τ :=
⌈
4× 108 ×mn

(
n ln

(
4ms2

ε2

)
+ 2 ln

(
2
δ

))⌉
. (67)

Let γ be the projective transformation γ : y 7→ y
1−cT y , and γ−1 the inverse map, γ−1 : x 7→ x

1+cT x
.

For any ε′ > 0, let Qε′ := Q ∩ {y
∣∣cT y ≤ 1 − ε′} and Uε′ be the hyperplane {y

∣∣cT y = 1 − ε′}. Let
ε̂ = εδ

4n and Kε := γ(Qε). Let K := Kε̂ = γ (Qε̂). For x ∈ K, let Dx denote the Dikin ellipsoid (with
respect to K) of radius r := 3

40 , centered at x.
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4 Algorithm

1. Choose x0 uniformly at random from r−1Do, where o is the origin.

2. While i < τ and cTγ−1(xi) < 1− ε, choose xi+1 using the rule below.

(a) Flip an unbiased coin. If Heads, set xi+1 to xi.

(b) If Tails pick a random point y from Dxi .

(c) If xi 6∈ Dy, then reject y and set xi+1 to xi; if xi ∈ Dy, then set xi+1 to y.

3. If cTγ−1(xτ ) ≥ 1− ε output γ−1(xτ ), otherwise declare that there is no y such that By ≤ 1
and cT y ≥ 1.

5 Analysis

For any bounded f : K → R, we define

‖f‖2 :=

√∫
K
f(x)2ρ(x)dλ(x)

where ρ(x) = vol(Dx)∫
K vol(Dx)dλ(x)

. The following lemma shows that cross ratio is a projective invariant.

Lemma 14. Let γ : Rn → Rn be a projective transformation. Then, for any 4 collinear points
a, b, c and d, (a : b : c : d) = (γ(a) : γ(b) : γ(c) : γ(d)).

Proof. Let {e1, . . . , en} be a basis for Rn. Without loss of generality, suppose that a, b, c, d ∈ Re1. γ
can be factorized as γ = γ2 ◦γ1 where γ1 : Rn → Rn is a projective transformation and maps Re1 to
Re1 and γ2 : Rn → Rn is an affine transformation. Affine transformations clearly preserve the cross
ratio, so the problem reduces to showing that (a : b : c : d) = (γ1(a) : γ1(b) : γ1(c) : γ1(d)), which
is a 1-dimensional question. In 1-dimension, the group of projective transformations is generated
by translations (x 7→ x + β), scalar multiplication (x 7→ αx) and inversion (x 7→ x−1), where
α, β ∈ R \ {0}. In each of these cases the equality is easily checked.

The following was proved in a more general context by Nesterov and Todd in Theorem 4.1, [19].

Theorem 8 (Nesterov-Todd). Let pq be a chord of K and x, y be interior points on it so that
p, x, y, q are in order. Then z ∈ Dy implies that p+ |p−x|

|p−y| (z − p) ∈ Dx.

The following theorem is from [13].

Theorem 9 (Lovász-Simonovits). Let M be a lazy reversible ergodic Markov chain on K ⊆ Rn

with conductance Φ, whose stationary distribution is µ. For every bounded f , let ‖f‖2,µ denote√∫
K f(x)2dµ(x). For any fixed f , let Mf be the function that takes x to

∫
K f(y)dPx(y). Then if∫

K f(x)dµ(x) = 0,

‖Mkf‖2,µ ≤
(

1− Φ2

2

)k
‖f‖2,µ.

We shall now prove the main theorem regarding Algorithm Dikin , Theorem 2.
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of Theorem 2. Let pq be a chord of the polytope Kε containing the origin o such that
cT (γ−1(p)) ≥ cT (γ−1(q)). Let p′ = γ−1(p), q′ = γ−1(q) and r′ be the intersection of the chord p′q′

with the hyperplane U := {y
∣∣cT y = 1}. Then, |q−o||p−o| ≤

|q′−o|
|p′−o| ≤ s. |p−o||q−o| is equal to |(∞ : o : q : p)|.

By Lemma 14, the cross ratio is a projective invariant. Therefore,

|p− o|
|q − o|

=
(
|p′ − o|
|p′ − r′|

)(
|r′ − q′|
|q′ − o|

)
(68)

≤
(

1
ε

)
(s). (69)

Therefore, for any chord pq of Kε through o, |p||q| ≤
s
ε .

Let D =
∫
K vol(Dy)dλ(y). Let

ρo(x) =
{ 1

vol(Do)
, x ∈ Do;

0, otherwise,

be the density of xo and likewise ρτ be the density of the distribution of xτ . Let f0(x) = ρ0(x)
ρ(x) and

fτ (x) = ρτ (x)
ρ(x) .

‖f0‖22 =
∫
Do

(
ρ0(x)
ρ(x)

)2

ρ(x)dλ(x)

≤ D

vol(Do) inf
x∈Do

vol(Dx)

By Fact 1 and the fact that the Dikin ellipsoid of radius r with respect to Kε is contained in
the Dikin ellipsoid of the same radius with respect to K,

√
2mDo ⊇ Symo(Kε). (69) implies that

Symo(Kε) ⊇
(
ε
s

)
Kε. We see from Theorem 8 that inf

x∈Do
vol(Dx) ≥ vol((1− r)Do). Therefore,

‖f0‖22 ≤ D

vol(Do) inf
x∈Do

vol(Dx)

≤
(

2m( sε )
2

1− r

)n(
D∫

Kε
vol(Dy)dλ(y)

)

=
(

2m( sε )
2

1− r

)n( 1
π(Kε)

)
, (70)

where π is the stationary distribution. For a line ` ⊥ U , let π` and ρ` be interpreted as the induced
measure and density respectively. Let ` intersect the facet of K that belongs to Uε̂ at u. Then by
Theorem 8, for any x, y ∈ ` ∩K such that |x − u| > |y − u|, ρ`(x)

|u−x|n ≤
ρ`(y)
|u−y|n . By integrating over

such 1-dimensional fibres ` perpendicular to U , we see that

π(Kε) =

∫
`⊥U π`(` ∩Kε)du∫

`⊥U π`(`)du

≤ sup
`⊥U

π`(` ∩Kε)
π`(`)

≤
(

(1− 1/ε̂)n+1 − (1/ε− 1/ε̂)n+1

(1/ε− 1/ε̂)n+1

)
. exp(

δ

4
)− 1 as n→∞. (71)
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The relationship between conductance Φ and decay of the L2 norm from Theorem 9 tells us that

‖fτ − Eρfτ‖22 ≤ ‖f0 − Eρf0‖22 e−τΦ2

=
(
‖f0‖22 − ‖(Eρf0)1‖22

)
e−τΦ2

≤
(

2m( sε )
2

1− r

)n(
e−τΦ2

π(Kε)

)
(from (70))

which is less than δ2

4π(Kε)
, when we substitute Φ from Theorem 11 and the value of τ from (67).

δ2

4π(Kε)
≥

∫
Kε

(fτ (x)− Eρfτ )2ρ(x)dλ(x)

≥

(∫
Kε

(fτ (x)− Eρfτ )ρ(x)dλ(x)
)2∫

Kε
ρ(x)dλ(x)

=
(P[xτ ∈ Kε]− π(Kε))2

π(Kε)
.

which together with (71) implies that P[xτ ∈ Kε] . δ and completes the proof.

The following generalization of Theorem 3 was proved in [16].

Theorem 10 (Lovász-Vempala). Let S1 and S2 be measurable subsets of K and µ a measure
supported on K that possesses a density whose logarithm is concave. Then,

µ(K \ S1 \ S2)µ(K) ≥ σ(S1, S2)µ(S1)µ(S2).

The proof of the following lemma is along the lines of Lemma 1 and is provided below.

Lemma 15. Let x, y be points such that σ(x, y) ≤ 3
400
√
mn

. Then, the overlap∫
Rn

min ( vol(Dx)Px, vol(Dy)Py) dλ(x)

between vol(Dx)Px and vol(Dy)Py in algorithm Dikin is greater than ( 9
100 − o(1)) vol(Dx).

Proof. If x→ w is one step of Dikin ,∫
Rn

min ( vol(Dx)Px, vol(Dy)Py) dλ(x) =

Ew
[
min

(
vol(Dx), vol(Dy)

dPy
dPx

(w)
)]

.

Ew
[
min

(
vol(Dx), vol(Dy)

dPy
dPx

(w)
)]

=

vol(Dx)P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] .

Let Ex denote the event that
0 < max

(
‖x− w‖2w, ‖x− w‖2x

)
≤ r2

(
1− 1

n

)
and

Ey denote the event that max (‖y − w‖w, ‖y − w‖y) ≤ r. The probability of Ey when x → w is a
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transition of Dikin is greater or equal to P[Ey∧Ex]
2 when w is chosen uniformly at random from Dx.

Thus, using Lemmas 5, 6 and 7,∫
Rn

min ( vol(Dx)Px, vol(Dy)Py) dλ(x) ≥

vol(Dx)
P
[
Ey

∣∣∣Ex]P [Ex]

2
≥

vol(Dx)(1− 3
√

2r − 8r2 − erfc(2)− erfc(3
2)− o(1))

4
√
e

.

When r = 3/40, this evaluates to more than
vol(Dx)( 9

100 − o(1)).

The proof of the following theorem closely follows that of Theorem 4.

Theorem 11. If K is a bounded polytope, the conductance of the Markov chain in Algorithm Dikin
is bounded below by 8

105
√
mn
.

Proof. For any x 6= y ∈ K, vol(Dy)
dPy
dλ (x) =

vol(Dx)dPxdλ (y), and therefore

ρ(x) :=
vol(Dx)∫

K vol(Dx)dλ(x)

is the stationary density. Let δ = 3
400
√
mn

and ε = 9
100 . Theorem 10 is applicable in our situation

because by Lemma 13, the stationary density ρ is log-concave. The proof of Theorem 4 now applies
verbatim apart from using Lemma 15 instead of Lemma 1, and Theorem 10 instead of Theorem 3.
This gives us ∫

S1

Px(S2)dρ(x) ≥
(

(1− δ)2εδ

8

)
min(π(S1), π(S2)).

Thus we are done.
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