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Abstract

Let K be a polytope in R™ defined by m linear inequalities. We give a new Markov Chain
algorithm to draw a nearly uniform sample from K. The underlying Markov Chain is the first to
have a mixing time that is strongly polynomial when started from a “central” point xg. If s is the

;5%3; and e is an upper bound on the desired

total variation distance from the uniform, it is sufficient to take O (mn (n log(sm) + log %))
steps of the random walk. We use this result to design an affine interior point algorithm that
does a single random walk to solve linear programs approximately. More precisely, suppose
Q = {z| Bz < 1} contains a point z such that ¢”z > d and r := sup_, || Bz|| + 1, where B is an
m x n matrix. Then, after 7 = O (mn (nln (™) +1n 1)) steps, the random walk is at a point
x, for which ¢T2, > d(1 — ¢) with probability greater than 1 — . The fact that this algorithm
has a run-time that is provably polynomial is notable since the analogous deterministic affine
algorithm analyzed by Dikin has no known polynomial guarantees.

supremum over all chords pg passing through x¢ of

1 Introduction

We use ideas from interior point algorithms to define a random walk on a polytope. We call this
walk Dikin walk. The Markov Chain defining Dikin walk is invariant under affine transformations of
the polytope. Consequently, the complex interleaving of rounding and sampling present in previous
sampling algorithms for convex sets (see [6, 7, 16]) is unnecessary. The following are notable features
of Dikin walk.

1. The measures defined by the transition probabilities of Dikin walk are affine invariants, so
there is no dependence on R/r (where R is the radius of the smallest ball containing the
polytope K and r is the radius of the largest ball contained in K).

2. If K is an n-dimensional polytope defined by m linear constraints, the mixing time of the
Dikin walk is O(nm) from a warm start (i. e. if the starting distribution has a density bounded
above by a constant).

3. If the walk is started at the “analytic center” (which can be found efficiently by interior point
methods [20, 21]), it achieves a variation distance of € in
0] (mn (n logm + log %)) steps. This is strongly polynomial in the description of the polytope.

Previous sampling algorithms were applicable to convex sets specified in the following way. The
input consists of an n-dimensional convex set K circumscribed around and inscribed in balls of
radius r and R respectively. The algorithm has access to an oracle that when supplied with a point

in R™ answers “yes” if the point is in K and “no” otherwise.



The first polynomial time algorithm for sampling convex sets appeared in [6]. It did a random
walk on a sufficiently dense grid. The dependence of its mixing time on the dimension was O*(n?3).
It resulted in the first randomized polynomial time algorithm to approximate the volume of a convex
set.

Another random walk that has been analyzed for sampling convex sets is known as the ball
walk, which does the following. Suppose the current point is z;. y is chosen uniformly at random
from a ball of radius § centered at x;. If y € K, x;11 is set to K; otherwise x;11 = x;. After many
successive improvements over several papers, it was shown in [7] that a ball walk mixes in O* (n?—;)
steps from a warm start if § < ﬁ A ball walk has not been proved to mix rapidly from any single

point. A third random walk analyzed recently is known as Hit-and-Run [12, 14]. This walk mixes
in O (n3(§)2 In %) steps from a point at a distance d from the boundary [14], where € is the desired
variation distance to stationarity. Dikin walk is similar to ball walk except that Dikin ellipsoids
(defined later) are used instead of balls. Dikin walk is the first walk to mix in strongly polynomial
time from a central point such as the center of mass (for which s, as defined below, is O(n)) and the
analytic center (for which s = O(m)). Our main result related to the Dikin walk is the following.

Theorem 1. Let n be greater than some universal constant. Let K be an n-dimensional polytope
defined by m linear constraints and xo € K be a point such that s is the supremum over all chords pq

passing through xq of IZ:ig! and € > 0 be the desired variation distance to the uniform distribution.

Let 7 > 7 x 10® x mn (nln (20 sy/m) + In (3—3)) and xg,x1,... be a Dikin walk. Then, for any

measurable set S C K, the distribution of x, satisfies ’]P’[xT €S — \‘/’(‘:11((]5())’ <€

1.0.1 Running times

The mixing time for Hit-and-Run from a warm start is O (”2;52), while for Dikin walk this is

O(mn). Hit-and-Run takes more random walk steps to provably mix on any class of polytopes

where m = o (%) For polytopes with polynomially many faces, R/r cannot be O (n%*) (but

can be arbitrarily larger). Thus, m = o(n (%)2) holds true for some important classes of polytopes,
such as those arising from the question of sampling contingency tables with fixed row and column
sums (where m = O(n)). Each step of Dikin walk can be implemented using O(mn?~!) arithmetic
operations, 7 < 2.376 being the exponent of matrix multiplication (see 2.1.1). One step of Hit-
and-Run implemented naively would need O(mn) arithmetic operations. Evaluating costs in this

manner, Hit-and-Run takes more random walk steps to provably mix on any class of polytopes

where m? = o (n2§2). A sufficient condition for m = o (ng_;RQ) to hold is m = o(n*™7).

s T

1.1 Applications
1.1.1 Sampling lattice points in polytopes

While polytopes form a restricted subclass of the set of all convex bodies, algorithms for sampling
polytopes have numerous applications. It was shown in [8] that if an n dimensional polytope
defined by m inequalities contains a ball of radius (n+/logm), then it is possible to sample the
lattice points inside it in polynomial time by sampling the interior of the polytope and picking a
nearby lattice point. Often, combinatorial structures can be encoded as lattice points in a polytope,
leading in this way to algorithms for sampling them. Contingency tables are two-way tables that
are used by statisticians to represent bivariate data. A solution proposed in [4] to the frequently
encountered problem of testing the independence of two characteristics of empirical data involves
sampling uniformly from the set of two-way tables having fixed row and column sums. It was shown



in [17] that under some conditions, this can be achieved in polynomial time by quantizing random
points from an associated polytope.

1.1.2 Linear Programming

We use this result to design an affine interior point algorithm that does a single random walk to
solve linear programs approximately. In this respect, our algorithm differs from existing random-
ized algorithms for linear programming such as that of Lovdsz and Vempala [15], which solves more
general convex programs. While optimizing over a polytope specified as in the previous subsection,
if m = O(n?7¢), the number of random steps taken by our algorithm is less than that of [15]. Given
a polytope @ containing the origin and a linear objective ¢, our aim is to find with probability
> 1—4, a point y € Q such that ¢’y > 1 — € if there exists a point z € Q such that ¢’z > 1. We
first truncate @ using a hyperplane ¢’y = 1 — ¢, for ¢ << € and obtain Q; = Q N {y’cTy <1-—¢€}.
We then projectively transform Q: to “stretch” it into a new polytope v(Q¢) where 7 : y —

y
1—cly"
Finally, we do a simplified Dikin walk (without the Metropolis filter) on v(Q;) which approacth
close to the optimum in polynomial time. This algorithm is purely affine after one preliminary
projective transformation, in the sense that Dikin ellipsoids are used that are affine invariants but
not projective invariants. This is an important distinction in the theory of interior point methods
and the fact that our algorithm is polynomial time is notable since the corresponding deterministic
affine algorithm analyzed by Dikin [5, 23] has no known polynomial guarantees on its run-time. Its
projective counterpart, the algorithm of Karmarkar however does [9]. In related work [2], Belloni
and Freund have explored the use of randomization for preconditioning. While there is no “local”
potential function that is improved upon in each step, our analysis may be interpreted as using the
Ly, norm (u being the appropriate stationary measure) of the probability density of the k" point
as a potential, and showing that this reduces at each step by a multiplicative factor of (1 — %2)
where ® is the conductance of the walk on the transformed polytope. We use the L3 ,, norm rather
than variation distance because this allows us to give guarantees of exiting the region where the
objective function is low before the relevant Markov Chain has reached approximate stationarity.
The main result related to algorithm (Dikin) is the following.

Theorem 2. Let n be larger than some universal constant. Given a system of inequalities By < 1,
a linear objective ¢ such that the polytope

Q:={y:By<1and|cly <1}

is bounded, and €,6 > 0, the following is true. If 3z such that Bz < 1 and ¢’z > 1, then y, the
output of Dikin, satisfies

with probability greater than 1 — 4.

1.1.3 Strong Polynomiality

Let us call a point x central if In s, where s is the function of x defined in Theorem 1, is polynomial
in m. The mixing time of Dikin walk both from a warm start, and from a starting point that is
central, is strongly polynomial in that the number of arithmetic operations depends only on m and
n. Previous Markov Chains for sampling convex sets (and hence polytopes) do not possess either of
these characteristics. In the setting of approximate Linear Programming that we have considered,
the numbers of iterations taken by known interior point methods such as those of Karmarkar [9],
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Figure 1: A realization of Dikin walk. Dikin ellipsoids D,,, D,, and D,, have been depicted.

Renegar [20], Vaidya [21] etc are strongly polynomial when started from a point that is central in
the above sense. The algorithm Dikin presented here is no different in this respect. The fact that
Dikin walk has a mixing time that is strongly polynomial from a central point such as the center
of mass, is related to two properties of Dikin ellipsoids listed below.

1.1.4 Dikin ellipsoids and their virtues

Let K be a polytope in n—dimensional Euclidean space given as the intersection of m halfspaces
aiTx < 1,1 < i< m. Defining A to be the m x n matrix whose i** row is a;fp, the polytope can be

specified by Az < 1. Let z¢ € int(K) belong to the interior of K. Let

aiaT
H@) = 2 Gy

1<i<m i v

and ||z — z||2 := (2 — )T H(x)(z — 2). The Dikin ellipsoid D’, of radius r for € K is the ellipsoid
containing all points z such that
|z — 2|l <

Fact 1. (1) Dikin ellipsoids are affine invariants in that if T is an affine transformation and
x € K, the Dikin ellipsoid of radius r centered at the point Tz for the polytope T(K) is
T(DZY). This is easy to verify from their definition.

(2) For any interior point x, the Dikin ellipsoid centered at x, having radius 1, is contained in K.
This has been shown in Theorem 2.1.1 of [18]. Also, the Dikin ellipsoid at x having radius
vm contains Sym,(K) := KN {y|2m —y € K}. This can be derived by an argument along
the lines of Theorem 4.



2 Randomly Sampling Polytopes

2.1 Preliminaries

For two vectors vy, vg, let <v1, vg>m = v{ H(x)vy. For x € K, we denote by D,, the Dikin ellipsoid
of radius % centered at x. Dikin ellipsoids have been studied in the context of optimization [5] and
have recently been used in online learning [1]. The second property mentioned in the subsection
below implies that the Dikin walk does not leave K.

The “Dikin walk” is a “Metropolis” type walk which picks a move and then decides whether
to “accept” the move and go there or “reject” and stay. The transition probabilities of the Dikin
walk are listed below. When at z, one step of the walk is made as follows.

1. Flip an unbiased coin. If Heads, stay at x.
2. If Tails pick a random point y from D,.

3. If x ¢ D,, then reject y (stay at x);
if x € Dy, then accept y with probability

o (1 3453) =i 1./ )

Therefore,

. 1 1
min <2V01(Dx)’ 2vol(Dy)) ’
Pz — y] = itye D, and x € Dy;
0, otherwise.

and Plz — 2] =1 - [ dPlz — y].

2.1.1 Implementation of a Dikin step

Let K be the set of points satisfying the system of inequalities Az < 1. H(z) = AT D(z)?A where
D(z) is the diagonal matrix whose i*" diagonal entry d;;(x) = 1_(11% .

We can generate a Gaussian vector v such that E[vv?] = (AT D?A)~! by the following procedure.
Let u be a random m-vector from a Gaussian distribution whose covariance matrix is Id. Find v
that satisfies the linear equations:
DAv =z
ATD(z —u) =0,
or equivalently,
ATD?*Av = AT Du.
Allowing (DA)T to be the Moore-Penrose pseudo-inverse of DA,

(DAY (z —u) =0 < (2 — u) L columnspan(DA)

s ATD(z —u) =0.

Thus, Evo” = (DA)'E22T(DA)IT. 2 is the orthogonal projection of u onto the column span of
DA,

therefore (DA)'Ez2T(DA)T = H(x)™'. We can now generate a random point from the Dikin
ellipsoid by scaling v/||v||, appropriately. The probability of accepting a Dikin step, is either 0



or the minimum of 1 and ratio of two determinants. Two matrix-vector products suffice to test
whether the original point lies in the Dikin ellipsoid of the new one. By results of Baur and Strassen
[3], the complexity of solving linear equations and of computing the determinant of an n x n matrix
is O(n”). The most expensive step, the computation of AT D(x)?A can be acheived using mn?~!,
by partitioning a padded extension of AT D into < %”_1 square matrices. Thus, all the operations
needed for one step of Dikin walk can be computed using O(mn?~!) arithmetic operations where
v < 2.377 is the exponent for matrix multiplication.

2.2 Isoperimetric inequality

Given interior points x,y in a polytope K, suppose p, q are the ends of the chord in K containing
x,y and p, x,y, q lie in that order. Then we denote lz=yllp=a]| by o(x,y). In(1 4+ o(z,y)) is a metric

lp—z|lqg—yl
known as the Hilbert metric, and given four collinear points a,b,c,d, (a:b:c:d) = % is

known as the cross ratio.
The theorem below was proved by Lovész in [12].

Theorem 3 (Lovész). Let S1 and Sy be measurable subsets of K. Then,

VOl(K \ Sl \ SQ) VO](K) > O'(Sl, SQ) VO](Sl) VOI(SQ).

2.3 Dikin norm and Hilbert metric

Theorem 4 relates the Dikin norm to the Hilbert metric. The Dikin norms can be used to define a
Riemannian manifold by using the associated bilinear form < -,- >, to construct a metric tensor.
Dikin walk is a random walk analogous to the “ball walk” on such a manifold.

Observation 1. The isoperimetric properties of this manifold can be deduced from those of the
Hilbert metric, and in fact, Theorem 3 and Theorem 4 together imply that the weighted Cheeger
constant of this manifold is bounded below by ﬁ

Theorem 4. Let x,y be interior points of K. Then,

2 = ylla
vmo

Proof. 1t is easy to see that we can restrict attention to the line ¢ containing z,y. We may also
assume that x = 0 after translation. So now b; > 0. Let ¢; be the component of a; along ¢; we
may view ¢;,y as real numbers with ¢ as the real line now. K N¢ = {y : ¢;y < b;} (where b; had
been taken to be 1). Dividing constraint i by |¢;|, we may assume that |¢;| = 1. After renumbering
constraints so that by = min{b;|c; = —1} and by = min{b;|c; = 1}, we have K N ¢ = [—by,bo]. Also

1
o=yl =* > o
i 1

Without loss of generality, assume that y > 0. [The proof is symmetric for y < 0.] Then, o(z,y) =

21(1();;1)12/3’ which is > ymax;(1/|b;|). This is in turn > % O

o(z,y) >

2.4 Geometric and probabilistic distance

Let the Lebesgue measure be denoted A. The total variation distance between two distributions
m and my is d(m1,m2) = supg |m1(S) — m2(S)| where S ranges over all measurable sets. Let the
marginal distributions of transition probabilities starting from a point v be denoted P,. Let us fix
r:= 3/40 for the remainder of this chapter. The main lemma of this section is stated below.



Lemma 1. Let x,y be points such that o(z,y) < Then, the total variation distance

between P, and P, is less than 1 — % +o(1).

3
400/mn "

Proof. Let us fix the convention that %(w) :=0 and %(y) := 4o00. If x — w is one step of the
Dikin walk,

d(Py, Py)) =1—E, [min <1, Zii (w))] :

It follows from Lemma 2 that

E, [min <1, Z}’;z (w))] > min (1, VY)‘;égz)) Pl(y € Du) A (w € Dy \ {})].

It follows from Lemma 4 that

Let E, denote the event that
1
0 <o (fo = wif o~ wl) <2 (1 1)

E, denote the event that max (||y — w|w, ||y — w|ly) < r and E,, denote the event that vol(D,,) >
e* vol(D,). The complement of an event E shall be denoted E.
The probability of E, when x — w is a transition of Dikin walk can be bounded from below

by (e%?ﬂ) P [Ey A Evol] where w is chosen uniformly at random from D,. It thus suffices to

2
find a lower bound for P [Ey ANE; N Evol] where w is chosen uniformly at random from D,, which
we proceed to do. Let erf(x) denote the well known error function % Iy e dt and erfe(z) :=
1 — erf(x).

P [Ey A Ey A Eyg] > (3)
P[Ey A Ey] —P[Eyo) - (4)

Lemma 3 implies that P [E,] < %(2) +0(1). Let E! be the event that

1
2 2
o wl2 <2 (1- ).
As a consequence of Lemma 5,

PIE] +o(1) > (“W")P[E;]

1—3V2r
> (2\/5> —o(1). (5)

Lemma 6 and Lemma 7 together tell us that

4r? + erfe(2) + o(1) 4r? + erfe(3/2) + o(1)
P[Ey‘Ex} > 1—< o >—< e ) (6)
B 8r2 4 erfc(2) + erfe(2) + o(1)
= 1-( 1_3\@T2 ) (7)



Putting (5) and (7) together gives us that
P[E,AE,) = P [Ey‘Em} P [E,] 8)

1—3V2r 8r2 + erfc(2) + erfc(2)
> Qﬁ B < 2\@ 2 > —0(1).

Putting together (2), (4) and (9), we see that if z — w is a transition of the Dikin walk,

_21r

E. [min (1, Zg (w))} > 64\/55 (1 — (3V2r + 8r® + erfe(2)(1 + Ve) + erfc(g))) —o(1).

For our choice of r = 3/40, this evaluates to more than 535 — o(1). O

Since Dikin ellipsoids are affine-invariant, we shall assume without loss of generality that z is
the origin and the Dikin ellipsoid at z is the Euclidean unit ball of radius . This also means that
in system of coordinates, the local norm | - ||, = || - ||o is the Euclidean norm || - || and the local
inner product <-, >m = <-, ->0 is the usual inner product <-, > On occasion we have used a - b to

signify <a, b>.
Lemma 2. Let w € supp(Py) \ {z,y} and y € Dy, and w € D,. Then,

Proof. Under the hypothesis of the lemma,

qP B min(vol(lDVTlDw)
sz(w) N min<v01(1Di)’Vfﬂ1Dw)
i (3554.0)
" min (S0 1)

The above expression can be further simplified by considering two cases.

1. Suppose min ( ‘\’,211((%:)), 1) =1, then

min( volD., 1)

vol(Dy)”’ 1
. vol( Dy ’
min < vol((Dx) , 1)
. vol(Dyw) _ vol(Dy)
2. Suppose min ( vol(D,) 1) = Sol(D,) then
. vol(Dy)

min ( v(c))l(Dy) ’ 1) vol(Dy)
min ( Y,zll((gj)), 1) vol(Dy)

Therefore,




Lemma 3. Let w be chosen uniformly at random from D,. The probability that vol(D,) <

e?¢vol(Dy,) is greater or equal to 1 — %(C) —o(1), i.e.

—o(1).
Proof. By Lemma 13, ln(m) is a convex function. Therefore,

In vol(Dy) — In vol(D,) < vm(vol(le)) (w— 1),

By Lemma 12, ||V In(—5p5 )” < 24/n. Therefore,

S S ViV In(Gpgy) - (w - )
Vin( rpy) (w—a) <2 ( Hvln(vol(l)z Milw == )

As stated in Theorem 5, when the dimension n — oo,

ViV In( vol(Dm)) (w—x)
IV In( i) e — 2|

converges in distribution to a standard Gaussian random variable whose mean is 0 and variance is
1. Therefore,

5 —o(1).

Vn VIn( vol(D )) (w—z) < S 1+ erf(c)
IV In(ip )l =2 =]~

This implies that

v

SR

vol(Dy) v {V In vol(le)) (w—2) < C]

> (1—}—61“;(2‘;) — 0(1).

O
Lemma 4. 1D,)
Vo
In|{ —%) < )
n ( Vol(Dx)> < no(z,y)
Proof. Suppose pq is a chord and p, x,y, ¢ appear in that order. By Theorem 8,
_ n
ln VO](D?J> S h,l ‘p y‘
vol(D,,) lp — z|™
< no(z,y).
O

Lemma 5. Let w be chosen uniformly at random from D,. Then,

1 1
Pllo—uly < (1= 1) flo—wiz < (1- 1))
n mn

> 1_32\/57“ —o(1).



Proof. Let E! be the event that

1
Hac—waC <72 (1—n>.

We set ¢ to 3v/2r in Lemma 8 and see that

1
P |le = wll + o = i 2 20 (1- 1) |}
< 3v2r +o(1).

If |z — w|| + ||l — wl|3,_, < 2r? (1 — 1), then either ||z — w||? or ||z — w||3,_,, must be less or
equal to 2 (1 — %) O

Lemma 6. Let o(x,y) < Then, if w is chosen uniformly at random from D,,

_3
400y/mn”

1
P [lly —wlly = vl max (= w2, e - w]3) < 7? <1 - n)}

4r% + erfc(2) + o(1)
< .
- 1—3v2r

Proof. 1t follows from Lemma 10, after substituting 1 for » and 2 for 7; that

1
|yl 2 fle -l < (1- 3]
erfc(2

§2r2+

This lemma follows using the upper bound from Lemma 5 for

1 1
Plle-ulp < (1- ) lo—uiz < (1-1)].

An application of Theorem 4 completes the proof. O

Lemma 7. Suppose o(z,y) < ﬁ. Let w be chosen uniformly at random from D,. Then,

1
B Iy~ vl 2 | max(le — vl o wl2) <12 (1~ 1))

472 + erfe(3/2) + o(1)
< .
- 1—3v2r

Proof. Substituting ¢ = 1 in Lemma 9, we see that

C
P [y - wl? — llo - wl = w1l - w]? <7201 5)]

erfc(3/2) +o(1).

< 272
<2+ —

This implies that

T 1
P [l =l e =l 2 Zfle— w2 <2 (1- 1]

fc(3/2
<2r? 4 erc(23/) + o(1).

10



This lemma follows using the lower bound from Lemma 5 for
2 2 1 2 2 1
Plle—wl <r?(1-— ) [le—wl2<r?(1-—)].

The following theorem has the geometric interpretation that the probability distribution ob-
tained by orthogonally projecting a random vector v,, from an n-dimensional ball of radius /n onto
a line converges in distribution to the standard mean zero, variance 1, normal distribution N[0, 1].
This was known to Poincaré, and is a fact often mentioned in the context of measure concentration
phenomena, see for example [11].

O]

Theorem 5 (Poincaré). Let v, be any n-dimensional vector and h, be a random vector chosen

Vn<vp,hn>

uniformly from the n-dimensional unit Fuclidean ball. Then, as n — oo, Tonlllhmll - COTVETgES mn

distribution to a zero-mean Gaussian whose variance is 1, i. e. N[0, 1].

Let )
Ny ==z N B+ 2V6)rlly — 2|

YAy Vi

Lemma 8. Let v be chosen uniformly at random from D, and ¢ be a positive constant. Then,

( 182

C
P (llz = olf2 + 1o = vl > 202 (1 - >)]

n
<c+o(l).

Proof. Let the it" constraint be afz < 1 for all i € {1,...,m}. Let z — v be denoted h. In the
present frame, for any vector v, ||v||, = ||v]|.

T1\2 T 1,\2
2 2 _ Z (aj h) Z (a; h)
Hx_UH’U_'_ Hm_UHQI—U - - (1 —aZTh)Q + (1"‘(1?}1)2 (10)

i
In the present coordinate frame ), aial = I. Consequently for each 1,

E[(alTh)Q] _ Haz||2li[”h“2] (11)

IN

(12)

7"2
n

@h? @ N L+ (aTh)?
> (o ey 3 pume) = S (i) (13

i

_ 3(al'n)* — (al'n)®
- Z<(“"Th)2+ (1~ (aTh)2)? >

)

aTh) — (aTh)®
R - (14

In the present coordinate frame ), aial = I. Consequently for each 1,

a1
E[Haz-H?HhH?] = o (15)

11



1

By Theorem 5, the probability that |al h| > n~1 is O(e=V™?). [aTh| is < ||a}||r, which is less
than % This allows us to write

3(aTh)* = (al'h)6
E [ (({ _)(aiT;(L);)Q) ] 3E[(a?h)4](1 +0(1)), (16)
and so
aTh 4
. Z (( )( Tf(L ] 23”3 aj h)"](1 + o(1)). (17)

Next, we shall find an upper bound on E[3";(al h)?]. The length of h and its direction are inde-
pendent, therefore

E

2000 ] 2 =R TE ] (18)

i

A direct integration by parts tells us that if the distribution of X is N[0, 1], then E[X%] = 3.
Therefore,

E [W} _ 3+o(l) (19)

lail[ ][R ]1* n?

E[||A]|*] is equal to r*(1 4+ o(1)) and so

Z(a?hﬁ] = () 20)

7 %

E

This implies that

3(alh)4 9 0
< 2t ZH i 2t (22)
_ (9+ol >>4_ -

In (22), we used the fact that > ,a;al = I and so ||a;]|> < 1 for each i. Together, Markov’s
inequality and (23) yield the following.

3(al'h)* — (aTh)® _ cort 3(al'h)* cort
g Z A= @h?? = n ] = F ;(1—(%%)2)2 = (24)
< 9+o(1). (25)
C2
Also,
B{IAIZ > 21— 2] = PRIl > (1= =) (26)
< 1-—e 7 +o(l). (27)

12



We infer from (25) and (27) that

3(al'h)* — (al'n)® c1 — cor? _
P |||h|? L L 2Q-—=—= < 1- — 1
Il + 3 S e 2 = A ) %+ —+o()
(2
C1 9
< =+ —= 1). 28
< G+l (28)
Setting ¢ to ¢ and ¢o to 1—68 proves the lemma. O

Let ES be the event that ||z — wl|2 < r?(1 — £).

Lemma 9. Let w be a point chosen uniformly at random from D,. Then, for any positive constant
¢, independent of n,
2 2
Pllly = wl = llz = wl? > v |E]

<oy erfc(3/2) n

< 5 o(1).

Proof. ||y||2, can be bounded above in terms of ||y|, as follows.

2 < oF }jia@'“? y (29)
v — (1 — afw)?
1
< (s g ) S el w (30)

For each 14, ||a;|| < 1, therefore

1 2
(Sup (l—aTw)g) ZyTaia;TFy < (1”2‘;3)2 (31)

(2 7 i

Let E, be the event that [|w]|2 <1 — £.
By Theorem 5,

c 1— erf(Th)
Ew] < g Foll). (32)

P [(—2<y,w>0) > 27’7]\;’%‘“

(<y, w>o — <y, w>w)2 can be bounded above using the Cauchy-Schwarz inequality as follows.

a;aT ?
o - (s

IN
—
]
B
8

Tai((1 - af w)* - 1))2 Z(a,T )2

(1 —alw)? - i ¥ '
Let s be a standard one-dimensional Gaussian random variable whose variance is 1 and mean is 0
(i.e. having distribution N[0, 1]). Since r < 3 and each [|a;| = ||a;||, is less or equal to 1, it follows
from Theorem 5 that conditional on EY,,

(anai((l — alTw)2 — 1))2

4r?[lai|?(1 = af w)*

13



converges in distribution to the distribution of x*, whose expectation can be shown using integration

by parts to be 3. So,

IN

o 5o (o7l -0

i

5 (5 ) lalltr' (3 + o)

12 4 o(1)
< (P S a2
(2

(124 0(1)r!
=
Thus by Markov’s inequality,
(wha;((1 — a] w)* — 1))2 12n74 14 0(1)
P : > ol < =22 33
zi: (1= afw)* L (33)
>i(al'y)? is equal to ||y||2. Therefore (33) implies that
2nort|lyl2] _ 1+ o0(1
P {(<y,w> . <y,w> )2 > n2r ’yHo:| < +o( ) (34)
o w n /,72
Putting (32) and (34) together, we see that
2rmliyllo , ., /12020t ]lyll3 1—erf(m)  1+0(1)
P|-2 > ——F = 4N —2 |E¢ < 35
[ (y,w), > N - i 5 +— (35)
Conditional on Ef, [|wl|2 is less or equal to r(1 — £).
Therefore, using erfc(x) to denote 1 — erf(x),
2 2r|y|| erfc(ny)
o2 2 S lyll5 yo( )‘c < -1 m .
P |l = wld = ol = oo o 20 (5 4 /mm) B8] < a0t
Setting m = 3/2 and 79 = ﬁ, gives
fc(3/2
Py~ wl? il > |E5] < 2+ T o) (36)
O

Lemma 10. Let ¢ be a positive constant. Let

2rm|ly — x 20|y —x
vy o=y — o2+ 2 2l 2y —2le (g gy )

vn vn

If w is a point chosen uniformly at random from D,, for any positive constants n and ny, Then,

P [lly — wl2 - llz = w]2 = | B

2r2  erfe(m)
< ? + T + 0(1).

14



Proof.

ly = wl2 = Jyl2 + lwll? - 2(w,y), (37)
< Iyl + ol (38)
Ul = wl2)2 = 20w, ), +2,/(w, ), — (w,9),)2 (39)

We shall obtain probabilistic upper bounds on each term in (39).

(lwll§ = llwl3)? (40)

wla)? 1—(1—%1131)2 ?
(Z( ! ) (Z( ) ) .

K3 7

= (Z w?l a;) ) (24 al y —1—0(1))) (42)
= (o) Il Yo ) (13

Il
/\
M
3
/_\

—
= |
| _
Eal
S
N
)N
S~—
[N}
—
~—
~
[NV

IN

In inferring (42) from (41) we have used the fact that ||y||, is O(—L) which is o(1). As was stated

n

in (19) in slightly different terms,

la:[*r*(3 + o(1))

E [(wTai)ﬂ = 5

n

Therefore by Markov’s inequality, for any constant c,
TNz o2 G| L lai][*r*(3 + o(1))
> (@ ap) |l < r <1—n>] = X

i
3+0
Z las]|?

P13+ o(1))

E

IN

Therefore,

12]|y[|2r? 1+o0(1)
P [(Ilwllz —Jwll?)? > 772771 - < — (44)
n
vi(wy)

By Theorem 5, as n — oo, the distribution of T\O converges in distribution to N[0, 1]. There-

fore
2mrlyllof, o _ 24 € erfe(m)
P |(-2wa),) = O gz < 20 - 6] < S o), (15)

15



Finally, we need similar tail bounds for ({w, y>o —(w, y>y)2. Note that

o, (o = (o (Sl (150 ) (o)

wlazaly)? L-(L-a/y)? i
(Z( Hy>)(2( T )) (47)

7 3

= (Z(wTaiaiTy)2> (Z(4+ 0(1))(afy)2> (48)

% 7

IN

= (4+0(1) (Z(wTaia?yV) Iy1l3- (49)

i

It suffices now to obtain a tail bound on Y, (w”a;al y)?. By Theorem 5,

E Z<wTaia?y>2)||wu§gr2<1§>] < (Znam y||2><”°(1”
| < () )
_ Dl oy
Therefore, '
P [(Gwns), - (w2 < 2] o 12D (50)

Putting together (44), (45) and (50), we see that

20y 22 erfe(m)
Pl = wlly =l > Iyl + = 70 (Var 4+ “ 8l ) [Bo ) < o+ S 4 o))

O

The following is a generalization of the Cauchy-Schwarz inequality that takes values in a cone
of semidefinite matrices where inequality is replaced by dominance in the semidefinite cone. It will
be used to prove Lemma 12 and may be of independent interest.

Lemma 11 (Semidefinite Cauchy-Schwartz). Let
i, ...,y be reals and A1, ..., Any be v X n matrices. Let B < C signify that B is dominated by
C in the semidefinite cone. Then

(é oziAZ-) (Z:a Ai)T < (é&) <§AiAiT> , (51)

Proof. For each ¢ and j,

0 < (ain — az‘A]‘) (ain — OéiAj)T

16



Therefore,

%ZZ A7) (ajAi — aiy)"

We shall obtain an upper bound of 2y/n on

|V In(

VOID;E)H ‘x:o - HVID det H” ‘o‘

Lemma 12. ||Vindet H|;||» < 2y/n.

Proof. In our frame,

Zaia? =1, (52)

where [ is the n x n identity matrix, and for any vector v,
[ollo = [[v]l. (53)

If X is a matrix whose o — f9 norm is less than 1, log(I + X) can be assigned a unique value by

equating it with the power series
o0

>y A

i=1

Using this formalism when y is in a small neighborhood of the identity.

Indet H(y) = traceln H(y). (54)
In order to obtain an upper bound on ||V Indet H|| at o, it suffices to uniformly bound ‘mnadihe”{‘
along all unit vectors h, since
|VIndet H|| = sup |—trace InH|. (55)
IAl=1
0
[ahtrace In H}
o
T
- <trace In (Z %) —In I) (56)
I )
= Z 2(al h)(trace a;al) (57)

= 2 |ail?a] h. (58)

17



The Semidefinite Cauchy-Schwarz inequality from Lemma 11 gives us the following.

(3 lalZa) (3 llailaf) < (3 llall (3 asal)

(59)

>, a;al = I, so the magnitude of each vector a; must be less or equal to 1, and ", ||a;||* must

equal n.
Therefore

(Z ||az'||4)(z aial) = (3 llaill )

i

< (D llal®I

%

= nl

(59) and (62) imply that

O llaslPa) (3 llasl*al) < 1.

(55), (58) and (63) together imply that

[Vindet H| < 2v/n.

The following is due to P. Vaidya [22].

Lemma 13. Indet H is a convex function.

Proof. Let 8% denote partial differentiation along a unit vector h. Recall that ", aiaiT =1

0% Indet H
(Oh)?

aiaiT aiaZT
gi_% %trace In <<Z (1_5%Th)2> <Z (14_5a;fh)2>>
' trace <ln (Zl aiaiT(ijo(j + 1)(5aiTh)j)>>
i ;
trace (ln (ZZ aiaiT(ijo(j + 1)(_5aiTh)j))>
52

trace Y ;- % (EZ aia;fp(zjzl(j + 1)(5a;rh)j))k
50 62
trace 5 % (ZZ aia?(zjzl(j + 1)(—5aiTh)j)>k

52 '

o

18
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The only terms in the numerators of the above limit that matter are those involving §2. So this
simplifies to

2Z:traceaiaiT(azTh)2 = QZHaiHQ(azTh)Q
i %

> 2) (ah)*

i

2
| 2(Siefn)
- m
2
=
This proves the lemma. O

2.5 Conductance and mixing time
The proof of the following theorem is along the lines of Theorem 11 in [12].

Theorem 6. Let n be greater than some universal constant. Let Sy and So := K\ Sy be measurable
subsets of K. Then,

/S Pu(Sy)dA(z) > min (vol(S1), vol(Ss)) -

6
10°y/mn
Proof. Let p be the density of the uniform distribution on K. We shall use p in some places
where it is seemingly unnecessary because, then, most of this proof transfers verbatim to a proof
of Theorem 11 as well. For any x # y € K,

) @) = o) S,

therefore p is the stationary density of the Markov chain. Let § = m and € = %. Let

St = S1 N {z|p(z)Pr(Ss) < ﬁ(K)} and S5 = So N {y|p(y)Py(S1) < ﬁ(K)} By the reversibility
of the chain, which is easily checked,

/ () Po(S2)dA(x) = / p() Py (S1)dA(y).
S1

Sa

If z € S] and y € S then

/Kmin (p(m)dd]j\x (w)7p(3/)cg}(w)> dA(w) < %'

For sufficiently large n, Lemma 1 implies that o(S], S5) > 4. Therefore Theorem 3 implies that

m(K\ 81\ S3) = om(Sy)m(S5).
First suppose 7(S7) > (1 — §)m(S1) and 7(S}) > (1 — )7 (S2). Then,
em(K\ 51\ 5))

/ Py(Sa)dp(z) > >
St
o (51)7(55)
= 2
_ 26
<(185)5> min(7(S1), 7(S2))
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and we are done. Otherwise, without loss of generality, suppose 7(S7) < (1 — §)m(S1). Then

| Pusaldpta) = Prisi)
S1

and we are done. O
The following theorem was proved in [13].

Theorem 7 (Lovész-Simonovits). Let ug be the initial distribution for a lazy reversible ergodic
Markov chain whose conductance is ® and stationary measure is p, and pg be the distribution of
the k" step. Let M := Supg *:f((ss)) where the supremum is over all measurable subsets S of K.
Then, for all such S,

o\ k
mm&—uwns¢ﬂ(1—i).

We now in a position to prove the main theorem regarding Dikin walk, Theorem 1.

of Theorem 1. Let t be the time when the first proper move is made. P[t > t"t >t -1 <
1- % + o(1) by Lemma 1 applied when x = xp and y approaches xy. Therefore when n is
sufficiently large,

In(£
P [t < (2)6] >1— <.
Let uy be the distribution of z; and p be the stationary distribution, which is uniform. Let p; and
p likewise be the density of i and p = ﬁK) the density of the uniform distribution. We shall
now find an upper bound for %. For any x € K, pi(x) > 6V(}1(2%z) by Lemma 1, applied when
x = xo and y approaches xg. By (2) in Fact 1 ‘f(}l((%)) > ( \/2%5> , which implies that
S
Sup Mt( ) — Sup pt(ﬂf) (65)
sck H(S) veK P

V2ms " 100 (66)

r 6 )
The theorem follows by plugging in Equation 66 and the lower bound on the conductance of Dikin
walk given by Theorem 6 into Theorem 7. 0

3 Affine algorithm for linear programming

We shall consider problems of the following form. Given a system of inequalities By < 1, a linear
objective ¢ such that the polytope

Q:={y:By<1and|cly <1}
is bounded, and €, > 0 the algorithm is required to do the following.

e If 3y such that By < 1 and ¢’y > 1, output y such that By < 1 and ¢’y > 1 — € with
probability greater than 1 — 6.

20



Figure 2: The effect of the projective transformation ~.

Any linear program can be converted to such a form, either by the sliding objective method or by
combining the primal and dual problems and using the duality gap added to an appropriate slack
variable as the new objective (see [10] and references therein). Before the iterative stage of the al-
gorithm which is purely affine, we need to transform the problem using a projective transformation.
Let s > sup ||By|| + 1, and

YeR
= {4x108xmn <n1n (42‘92) +2In (3))] (67)

and 7! the inverse map, 7! : z —

I—ZTy’ 1+:(C:Tm'
For any ¢ > 0, let Qo := QN {y‘cTy < 1—¢} and Uy be the hyperplane {y‘cTy =1-¢}. Let
é=9 and K. :=~(Q.). Let K := K; = v(Q.). For z € K, let D, denote the Dikin ellipsoid (with

4an
respect to K) of radius r := 43—0, centered at z.

Let v be the projective transformation ~y : y —
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4 Algorithm

1. Choose xg uniformly at random from 7~ D,, where o is the origin.
2. While i < 7 and ¢Ty~!(x;) < 1 — ¢, choose x;11 using the rule below.

a) Flip an unbiased coin. If Heads, set x;41 to x;.
+
b) If Tails pick a random point y from D, .
Yy i
(c) If x; & Dy, then reject y and set x;1 to x;; if x; € Dy, then set z;11 to y.

3. If Py~ Y(x;) > 1 — € output y~!(x,), otherwise declare that there is no y such that By < 1
and Ty > 1.

5 Analysis

For any bounded f : K — R, we define

wm:¢4ﬂ@wmwm

The following lemma shows that cross ratio is a projective invariant.

vol(Dy)

where p(2) = 15 @)

Lemma 14. Let v : R® — R"™ be a projective transformation. Then, for any 4 collinear points

a,b,c and d, (a:b:c:d)=(v(a):v(b):v(c):v(d)).

Proof. Let {e1,...,e,} be a basis for R". Without loss of generality, suppose that a,b,c,d € Rey.
can be factorized as v = 790y, where v : R — R" is a projective transformation and maps Re; to
Req and 9 : R™ — R"™ is an affine transformation. Affine transformations clearly preserve the cross
ratio, so the problem reduces to showing that (a :b:c:d) = (y1(a) : v1(b) : 71(c) : 71(d)), which
is a 1-dimensional question. In 1-dimension, the group of projective transformations is generated
by translations (z — x + 3), scalar multiplication (x — ax) and inversion (z — x7!), where
a, € R\ {0}. In each of these cases the equality is easily checked. O

The following was proved in a more general context by Nesterov and Todd in Theorem 4.1, [19].

Theorem 8 (Nesterov-Todd). Let pg be a chord of K and xz,y be interior points on it so that

p,x,Y,q are in order. Then z € D, implies that p + tz:;l (z—p) € D,.
The following theorem is from [13].

Theorem 9 (Lovész-Simonovits). Let M be a lazy reversible ergodic Markov chain on K C R”™
with conductance ®, whose stationary distribution is p. For every bounded f, let || fl2,, denote

1/fK 2du (z). For any fived f, let M f be the function that takes x to [, f(y)dP.(y). Then if
Jx I =0,

(I)Z
HMwa_0—>Hmm

We shall now prove the main theorem regarding Algorithm Dikin, Theorem 2.
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of Theorem 2. Let pq be a chord of the polytope K. containing the origin o such that

(v p)) > (v 1(q)). Let p' =~v~(p), ¢ = v '(q) and 7’ be the intersection of the chord p'q’
with the hyperplane U := {y’cTy = 1}. Then, ;Z:ZI < \Ei:ﬂ <s. ‘IS:ZI‘ is equal to [(co:0: q: p)|.
By Lemma 14, the cross ratio is a projective invariant. Therefore,

’p - 0’ — ’pl - O’ ‘TJ - q/’ (68)
lg — o ' —1'|) \|ld"— ol

Therefore, for any chord pg of K, through o, % <z

q
Let D = [, vol(Dy)dA(y). Let

1 .
pole) = { o ©E Do
0, otherwise,

be the density of z, and likewise p; be the density of the distribution of z,. Let fo(z) = 2@ and

@) p(x)
__ pr{x
(@) = Ty

0 = f (‘f(%))gmmdm
D

vol(D,) Iien[f) vol(Dy,)

IN

By Fact 1 and the fact that the Dikin ellipsoid of radius r with respect to K. is contained in
the Dikin ellipsoid of the same radius with respect to K, v2mD, 2 Sym,(K.). (69) implies that
Symo(Ke) 2 (£) K. We see from Theorem 8 that in[f) vol(D,) > vol((1 —r)D,). Therefore,

AT DY

D
2
<
[folz < vol(D,) inf vol(D,)
€D,
<

<271ﬂ£:2>n ( T vol(ll)?y)d)\(y)>

- (9) (i), o

where 7 is the stationary distribution. For a line ¢ 1 U, let 7y and py be interpreted as the induced
measure and density respectively. Let £ intersect the facet of K that belongs to U at u. Then by
Theorem 8, for any z,y € £ N K such that |z — u| > |y — ul, |5£(§|)" < Igi(gl)"' By integrating over
such 1-dimensional fibres ¢ perpendicular to U, we see that

Jo Tt N K )du
JoLu me(O)du
(4 N Ke)
T v ™)
<(1 -1/ —(1/e— 1/€)"“>
(1/e—=1/&"+1

(K. =

< exp(%) —1 asn— oo. (71)
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The relationship between conductance ® and decay of the Lo norm from Theorem 9 tells us that

Y
Ifr =Eofrll3 < llfo—Epfoll3e™™

2

= (Ifoll3 = 1(Bofo)1[3) e 7®

om(2)2\" [ e
< € f
< (1_T> (m@ (from (70))
L 52
which is less than (KD

R’ when we substitute ® from Theorem 11 and the value of 7 from (67).

('52
i) 2 [ 0@ - B

(Jie. (- (2) ~ Epfr)p(a)d@)

>
[k p(x)dA(x)
_ (Plar € K] — 7(K.))?
m(Ke)
which together with (71) implies that Pz, € K] < ¢ and completes the proof. O

The following generalization of Theorem 3 was proved in [16].

Theorem 10 (Lovdsz-Vempala). Let S1 and Sz be measurable subsets of K and p a measure
supported on K that possesses a density whose logarithm is concave. Then,

u(E N\ 51\ S2)u(K) = o(S1, S2)u(S1)p(S2).

The proof of the following lemma is along the lines of Lemma 1 and is provided below.

Lemma 15. Let x,y be points such that o(x,y) Then, the overlap

< _3
— 4004/mn "’

- min (vol(Dyz) Py, vol(Dy)Py) dA\(x)

between vol(D,)P, and vol(Dy)P, in algorithm Dikinis greater than (% —o(1)) vol(Dy).

Proof. If x — w is one step of Dikin,

min (vol(Dy) Py, vol(Dy)Py) d\(z) =
R”

E, [min <vol(D$), v01<Dy)Z]€z (w))] .

o [min <V01(Dz), vol(Dy)ZIJz z (w)ﬂ _

vol(Dz)P [(y € Dw) A (w € Dy \ {z})].
Let E, denote the event that

0 < max (||x —wl||2, ||z — wHi) < r2 (1 — %) and
E, denote the event that max (||y — wl|w, ||y — w|y) < r. The probability of £, when x — w is a
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transition of Dikinis greater or equal to when w is chosen uniformly at random from D,.

Thus, using Lemmas 5, 6 and 7,

P[EyAE:]
2

min (vol(Dy) Py, vol(Dy)Py) d\(z) >
Rn
P [Ey(E;} PIE
vol(Dy)(1 — 3v2r — 8r% — erfe(2) — erfe(3) — o(1))
4./e '

When 7 = 3/40, this evaluates to more than

vol(Dy) (735 — o(1)). O

vol(D,)

The proof of the following theorem closely follows that of Theorem 4.

Theorem 11. If K is a bounded polytope, the conductance of the Markov chain in Algorithm Dikin

is bounded below by ﬁ.

Proof. For any = # y € K, vol(Dy)%(x) =
vol(D,) djjf (y), and therefore

o vol(Dy,)
plr) = [ vol(D,)dA(x)

is the stationary density. Let § = and € = %. Theorem 10 is applicable in our situation

3
400/mn
because by Lemma 13, the stationary density p is log-concave. The proof of Theorem 4 now applies
verbatim apart from using Lemma 15 instead of Lemma 1, and Theorem 10 instead of Theorem 3.

This gives us

- ((1 —5)%e6

/Slpx(sz)dmm > : )min(w(sl)m(sz))_

Thus we are done. O
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