

TTOO

OOLL MMAANNUUAALL

Contents TOL Manual (ed.1) 1

Contents

Contents ... 1

1 Introduction .. 4

1.1 TOL-Project trac. Wiki ... 4

1.2 Ticket system .. 5

1.3 Source-code ... 6

1.4 Download and installation .. 9

1.4.1 Installation in Windows .. 9

1.4.2 Installation in Linux .. 9

1.5 TOL programs ... 10

1.5.1 The command console ... 10

1.5.2 TOLBase .. 11

2 The TOL language ... 15

2.1 Basic notions .. 15

2.1.1 Syntax .. 15

2.1.2 Variables .. 16

2.1.3 Numbers (Real) .. 18

2.1.4 Text strings (Text) ... 19

2.1.5 Functions (Code) ... 20

2.2 Sets ... 22

2.2.1 Sets (Set) .. 22

2.2.2 Control instructions .. 25

2.2.3 Set queries ... 28

2.2.4 Structures (Struct) .. 30

2.3 Statistics... 32

2.3.1 Descriptive statistics ... 33

2.3.2 Probability .. 33

2.3.3 Matrices (Matrix ... 35

2.3.4 Linear models .. 37

2.3.5 Virtual matrices (VMatrix) ... 39

2.4 Time variables ... 40

2.4.1 Dates (Date).. 40

Contents TOL Manual (ed.1) 2

2.4.2 Dated (TimeSet) .. 42

2.4.3 Time series (Serie) .. 44

2.4.4 Finite differences. Polynomial delays. (Polyn) ... 48

2.4.5 Difference equations Polynomial quotients (Ratio)... 49

2.4.6 Modelling with time series ... 50

2.5 Advanced notions .. 52

2.5.1 Modular programming (NameBlock) .. 52

2.5.2 Classes (Class) ... 54

2.5.3 Class design .. 57

2.5.4 Other language elements .. 60

2.5.5 Memory use .. 60

3 Use of TOL ... 61

3.1 System files ... 61

3.1.1 Source files .tol ... 61

3.1.2 File-reading/writing ... 61

3.1.3 Serialisation in TOL. OIS .. 61

3.1.4 Integration with the operating system. .. 61

3.2 Communication .. 61

3.2.1 Communication with the operating system .. 61

3.2.2 Obtaining urls... 61

3.2.3 Access to a database (DB<Function>) .. 64

3.3 TOL configuration .. 65

3.3.1 Configuration model(TolConfigManager) ... 65

3.3.2 Other configuration mechanisms .. 66

3.4 Package system ... 66

3.4.1 Packages ... 66

3.4.2 Installation and use of packages (#Require) .. 67

3.4.3 Package management (TolPackage) ... 68

3.4.4 Package repositories ... 70

3.4.5 Package-management graphic interface .. 70

3.4.6 Package source-code .. 71

4 TOL packages .. 73

Contents TOL Manual (ed.1) 3

4.1 StdLib .. 73

4.1.2 Bloque TolCore .. 74

4.1.3 StdLib package ... 74

4.2 GuiTools .. 75

4.2.1 Image management (ImageManager) ... 75

4.2.2 Contextual menu management (MenuManager) .. 76

4.2.3 Container editing .. 79

4.3 TolExcel .. 81

4.4 Other packages ... 84

4.4.1 Paquetes de MMS.. 84

4.4.2 TolGlpk ... 84

4.4.3 NonLinGloOpt ... 84

4.4.4 TolIpopt .. 85

4.4.5 MatQuery .. 85

4.4.6 BysMcmc ... 85

Indices .. 86

Figure index .. 86

Table index .. 86

1 Introduction TOL Manual(ed.1) 4

1 Introduction

This manual aims to provide an introduction to analysts in the use of TOL language. TOL is a
language that is fundamentally aimed at analysing time-indexed information. It is especially
useful for statistical analysis and for modelling dynamic processes. To do this, it uses time
algebra and time-series as instruments that enable good information analysis and management.

Syntactic and semantic elements of the language will be introduced throughout the manual, as
well as some functions and operators to handle different types of data.

This manual is also essential reading for those starting out in MMS-based modelling who have no
prior TOL programming knowledge.

The key characteristics of TOL are:

• It is oriented to time-series management. TOL uses an object to represent time-series.
This forms the basis for the representation of time-series. Please see section 2.4.

• Interpreted: this characteristic gives the analyst a certain amount of flexibility when it
comes to building prototypes, as its trial and error cycle is very agile in comparison with
a compiled language.

• Strong typing: All TOL expressions have a specific type of data which make it possible for
the interpreter to apply optimisations to code evaluation. Please seesection 2.1.1.

• Self-evaluation: This allows for the evaluation of TOL code within TOL code. This creates
the possibility of customised TOL programs. Although this is a very flexible construction,
it shouldn't be abused as the expressions evaluated in this way need to be analysed by
the parser every time.

• Oriented to objects: Although TOL isn't a language purely oriented towards objects, it
does implement class concepts with multiple inheritence; therefore facilitating the
implementation of solutions through an object-oriented design. This characteristic is
implemented from version 2.0.1 onwards. Please see section 2.5.2.

The TOL working environment consists of a website which acts as the point of assistance to TOL
users and also as the place where yTOL evaluation tools can be downloaded. In this chapter,
we'll describe the TOL work environment in more detail.

1.1 TOL-Project trac. Wiki

The development of the TOL-Project, is located at the website http://www.tol-project.org. This
acts as the meeting point for TOL user and language developers

1 Introduction TOL Manual(ed.1) 5

Figure 1.1.1: TOL-Project website.

TOL-Project is based on the trac system (http://trac.edgewall.org) which offers a collaborative
framework (wiki) to TOL developers to create informative content about the language. It also
acts as a system for reporting and following up incidents (tickets), and their use by the user
community.

The first recommended step for any new user of TOL is to register with the TOL-Project trac .
Once registration is complete, the user will be able to interact with the user/developer
community via the ticket reporting and follow-up system. All that's then required is for the
selection of a unique username, a password and plenty of enthusiam to collaborate with TOL!

1.2 Ticket system

There are many different ways to collaborate in TOL's development. The simplest one is to start
using it and to give feedback on doubts experienced, errors encountered, possible improvements
and user tips and shortcuts. In certain cases users find solutions to existing errors and offer
them for inclusion in future versions of TOL.

Figure 1.2.1: New ticket form.

1 Introduction TOL Manual(ed.1) 6

When creating a new ticket, it's necessary to add your (field Summary) and description (field

Description) to the form. The user can also indicate a priority level (field Priority) to the ticket,

indicating the importance being given to the request, as well as choosing a severity level for the
issue in question (field Severity).

Other important fields when creating a new ticket include:

• Component : The TOL module or component related with the ticket. In cases of

uncertainty, the value for this field can be omitted. Each component is associated with a
developer. If the field Assign to is left blank, a developer will be assigned automatically..

• Cc: usernames/user email addresses of those who need to be copied in on notifications

regarding changes to the request.

• Milestone: is the stage or category in which the ticket is to be resolved. The milestone is

generally used for version planning. However, in TOL-Project it is more commonly used
to conceptually classify requests.

• Version: The version number of TOL where the error was detected. This is very

important as the first step to resolving the issue to reproduce the original situation as
exactly as possible. In order to do this, the same version of TOL is required.

• Keywords: This is a list of keywords associated with the request, which can be very

useful when searching for specific terms.

It's also possible to attach files that may help explain the issue in question. For example, TOL
source code or screen-grabs of the moment the error occured .

Note that the text included in the ticket description can make use of the trac wiki's capacity for
formatted text content . The wiki supports a hypertext format with very symple syntax. A
description of this syntax can be seen at https://www.tol-project.org/wiki/WikiFormatting.

Please take into account how important it is to include all possible relevant information in the
ticket. This is especially true in cases of error-reporting. Including a segment of code in the
description, or in an attached file, can be of immense value to the developer trying to reproduce
the error in his working environment. However, there may be instances where this isn't possible
or time doesn't allow for the error to be isolated. No matter, the most important thing is to
include the description, the error trace or TOL log. This is always preferable to not providing
any information or leaving the error hidden.

1.3 Source-code

As of 2002, TOL adopted an open-source development model, under an open source-code
licence, namely the GNU GPL licence. This development model has allowed us to use software
packages developed under open source-licences. This has acted as a huge catalyst for TOL's
development.

A large part of TOL's algorithms are supported by the use of other packages which are available
in open source form. From those, it is worth higlighting:

• ALGLIB: A cross-platform numerical analysis and data processing library.
http://www.alglib.net

• BLAS: A basic linear algebra library. http://www.netlib.org/blas/index.html

1 Introduction TOL Manual(ed.1) 7

• Boost Spirit: A Boost component for the implementation of object-oriented recursive
descent parsers http://spirit.sourceforge.net, http://www.boost.org

• BZip2: A high-quality, open-source data compressor http://www.bzip.org

• CLUSTERLIB: A library used for segmentation. Written in C. http://bonsai.ims.u-
tokyo.ac.jp/~mdehoon/software/cluster/software.htm#source

• DCDFLIB: >C/C++ library used for distribution function evaluation.

http://people.scs.fsu.edu/~burkardt/cpp_src/dcdflib/dcdflib.html

• Google Sparse Hash: Extremely efficient for hash_map data structure implementation.
http://code.google.com/p/google-sparsehash

• GSL: GNU's scientific data library. http://www.gnu.org/software/gsl

• iKMLOCAL: Implementation in C++, effective for segmentation based inK-Means.
http://www.cs.umd.edu/users/mount/Projects/KMeans

• LAPACK: A lineal algebra package, goes hand-in-hand with BLAS.
http://www.netlib.org/lapack/index.html

• Optimal_bw: Effective use of kernal density estimation with optimal bandwith selection.
http://www.umiacs.umd.edu/~vikas/Software/optimal_bw/optimal_bw_code.htm

• SuiteSparse CHOLMOD: A library for Cholesky factoring in disperse storage.
http://www.cise.ufl.edu/research/sparse/cholmod

• ZipArchive: A C++ library for the compression of files and data inZIPformat.
http://www.artpol-software.com.

TOL is implemented in C++ and runs on the Linux and Windows operating systems. There are
different interfaces to interact with the language which include a command-line interface,
remote command server, graphic interface and web interface. It's also possible to use the
language via a dynamic link with the TOL library. This is currently possible from C++, Java, Tcl
and Visual Basic.

Although this manual isn't aimed at developers, we will explain how to access and explore TOL
source code. This can end up being useful when revising part of the standard library
implemented in TOL, when its source code is stored in the same repository as that of the TOL
kernel written in C++.

Nowadays, software is always developed with the support of a revision control system. Various
programs exist for this purpose. Some of them are proprietary, whilst some are well-known free
software such as CVS, GIT, FOSSIL, SVN, amongst others. TOL source code is stored in the SVN
revision control system (http://subversion.apache.org). WithSVN we can manage various
versions of the code, look through the entire history of changes implemented and find out all the
differences between source code from one version to the next. We can also identify the
developer responsible for a particular change, as well as other functions.

 We can explore TOL source code from the appropriate TRAC or through the support of anSVN
program client. The majority of distributions of Linux offer the option of installing SVN from
their software package repository. In the case of Windows we can download a client program
from http://subversion.apache.org/packages.html.

We can explore the repository's content and access the files contained in registered SVN
directories via the web interface. TOL source-code is stored in the tolp directory; inside which
we can find the directories trunk and branches, amongst others. The trunk directory contains the

1 Introduction TOL Manual(ed.1) 8

base code, from which the development version of TOL is built. This version generally contains
quite unstable and untested functionality. Newly released versions can be located in the
branches directory, each one with its own change history. These versions are usually more
stable than the trunk version, although with less functionality.

Figure 1.3.1: TOL source code web browser in the TOL-Project trac.

With SVN, each change made by a developer results in an increase in an internal number that
acts as a "screengrab" of the whole repository. However, the change is stored internally as a
change to the previous state. This number is known as revision.

Figure 1.3.2: TOL code revision explorer in the TOL-Project trac.

One of the functions accessible via the web interface is the change history. We can see the
changes introduced to the code during its most recent revision, just as we can see the changes
between any other previous versions of the revision and compare them with a more recent one.
To carry out this function, we need to select the revisions that we want to compare and then
click on View Changes.

1 Introduction TOL Manual(ed.1) 9

1.4 Download and installation

As previously stated TOL can be used in Windows and Linux.l At the time of writing this manual,
all the binary programs that we generate for both operating systems consist of 32 bits.
Therefore, even if a 64 bit computer is being used, we have to use TOL compiled for 32 bits.

1.4.1 Installation in Windows

To install the interpreters for TOL in Windowswe have to download the program installer from
https://www.tol-project.org/wiki/DownloadTol. This page includes a table which shows which
versions are available to install TOL.

Figura 1.4.1: Tables of versions available to download inWindows.

The first row of the table shows the version currently in development. Previously released
versions are listed in the subsequent rows of the table, in descending order of newest to oldest.
The link required for the download appears in the column marked Download<t1/>

Running the installer, for example the one downloaded from http://packages.tol-
project.org/win32/tolbase-v3.2-setup.exewill result in the installation of binary files included
by the TOLBase graphic interface, the command-line interface control panel (to program tol and
tolsh) and the vbtol library to enable use of ofTOL from Visual Basic.

There are some user functions installed in TOL that use R, invoking it externally via the
command-line interface. These functions therefore require that both R and the packages
quadprog, coda, Rglpk and slam be installed. In order to do this, R should be downloaded and
installed from http://www.r-project.org before going on to run the following instructions on an
R console:

install.packages("quadprog")
install.packages("coda")
install.packages("Rglpk")
install.packages("slam")

1.4.2 Installation in Linux

There isn't a similar installer available forLinux to the one for Windows. Therefore, the most
common course of action is to compile the source-code. This requires certain abilities relating to
the compilation process in Windows, as well as aptitude in using certain Linux commands, to
install the compilation requirements. This manual doesn't include a description of the steps to
compile the source code ofTOL interpreters.

1 Introduction TOL Manual(ed.1) 10

That said, aTOL software bundle does exist that allows the installation of TOL in the Linux
distribution referred to as CentOS. The aforementioned software bundle had been been tested in
version5.4 of CentOS.

This distribution to install TOL in CentOS can be downloaded at: http://packages.tol-
project.org/linux/binaries.

In this case, the installation process can be carried out by taking the following steps:

• Installation of prerequisites

sudo rpm -Uvh sysreq/epel/5/i386epel-release-5-4.noarch.rpm
sudo yum install atlas-sse2.i386
sudo ln -s /usr/lib/atlas/liblapack.so.3 /opt/tolapp-3.1/lib/liblapack.so
sudo ln -s /usr/lib/atlas/libf77blas.so.3 /opt/tolapp-3.1/lib/libblas.so
sudo yum install glibc-devel.i386 gsl.i386 R-core.i386 R-devel.i386
echo 'options(repos="http://cran.r-project.org")' > /tmp/Rinstall.R
echo 'install.packages("coda")' >> /tmp/Rinstall.R
echo 'install.packages("quadprog")' >> /tmp/Rinstall.R
echo 'install.packages("Rglpk")' >> /tmp/Rinstall.R
sudo R BATCH -f /tmp/Rinstall.R
rm /tmp/Rinstall.R

• Download the distribution

cd /tmp
wget http://packages.tol-project.org/linux/binaries/TOLDIST_3.1_p012.tar.bz2
tar zxf TOLDIST_3.1_p012.tar.bz2
cd TOLDIST_3.1_p012

• Installation

sudo ./install -–prefix=/opt/tolapp

 TOL 's libraries and programs will be installed under the directory indicated by the parameter-

-prefix. Once completed we can interact with TOL's text mode using the following command:

/opt/tolapp/bin/tolsh -d

TOL interactive shell activated...
15:29:30 TOL>

We can now run TOL sentences, such as:

WriteLn(Version);

v3.1 p012 2012-06-14 19:33:46 +0200 CEST i686-linux-gnu

1.5 TOL programs

Upon installing TOL,Windows or Linux software,we will have a set of libraries and programs at
our disposal which will allow us to develop solutions written in TOL language. Out of these
programs, the most frequently used are the command console (tol o tolsh) and the graphic
interface TOLBase.

1.5.1 The command console

The programs tol and tolsh are interpreters of TOLlanguage, essentially used for batch
processing of programs written inTOL. We can also run it in interactive mode and compile TOL
expressions written in the DOS console (for Windows users) or SH (for Linuxusers).

1 Introduction TOL Manual(ed.1) 11

When run in interactive mode, each evaluated expression generates a result that is stored in an
object stack. The result can later be reused in the same session.

The programs tolsh and tol operate in a similar way, except that tolsh implements a server mode
that allows it to remain running, listening on a TCP/IP port for remote evaluation orders.
Remote evaluation orders usually arrive from another TOL programme client. A TOL client
program can be the same tolsh, TOLBase or another one dynamically linked to the TOL library.

Upon running the TOL interpreter from the comman line interface we can specify various .tol

files that will be interpreted in the desired order. We can also make use of the following options:

• -i: Don't include the standard TOL library.

• -c"...": evaluate the TOL expression specified in inverted commas.

• -d: Start TOL in interactive mode. After evaluating the files and expressions specified in

the command line, it shows the user where the entry line is to type TOL expressions. TOL
expressions are evaluated upon pressing the "Return" key. The evaluation result is
displayed on the screen and a new expression is then asked for.

• -vE: activates the u of error messages. Error messages are emitted by the

Errorfunction or WriteLn with message parameter type "E".

• -mE: disables the release of error messages.

• -vW: activates the release of (warning) messages. Warning messages are emitted by the

Warning function or WriteLn with message parameter type "W".

• -mW: disables the release of (warning) messages.

• -vS: activates the release of system messages. System messages are notifications

emitted by TOL's functions and internal algorithms, e.g. Estimate.

• -mS: disables the release of system messages.

• -vU: activates the release of user messages.. User messages are emitted by WriteLn

with parameter message type equal to "U".

• -mU:disables the release of user messages>.

• -vT: activates the release of trace messages. Trace messages are messages emitted by

WriteLn with message parameter type equal to "T" and those emitted by the internal

function Trace.

• -mT: disables the release of trace messages.

• -v?A?: activates all types of releases.

• -m?A?: disables all types of releases.

1.5.2 TOLBase

TOLBase is a TOL client program that offers a graphic interface that facilitates interaction with
the TOL interpreter and the objects created as a result of of the evaluation of TOL code.

In figure 1.5.1 we can see the default components we find upon opening TOLBase. The image
shows the main window known as object inspector. This windows consists of three panels:

• An object tree.

• A panel with the object elements selected in the tree.

• A panel with the evaluation tab(Eval) known as the console, the output evaluation tab

(Salida) and an information tab.(Info)

1 Introduction TOL Manual(ed.1) 12

Figure 1.5.1: Main TOLBase window: object inspector.

The object tree has five main nodes. These nodes list TOL objects that simultaneously act as
containers of other TOL objects. These main nodes are:

• Grammars: displays the set of data types implemented in TOL. There is a sub-tree for

each data-type, which in turn contains the global variables created in the evaluation
session.

• Packages: displays the TOL packages loaded in the TOL session. Below each package there

is a sub-tree which displays package members. See section 3.4.

• Included Files: displays the .tol file-set included in the evaluation session. From each file, a

sub-tree can be displayed which shows the objects created in the evaluation session of
said file.

• Console Objects: contains the list of objects contained in the console, which are listed in

the order they were created.

• Object Spool: Used to apply contextual menu options to a selection of objects. For

example, to chart a group of time series, the objects have to belong to a common
container. Thespool is a virtual objects container whose purpose is to bring together the
contents of distinct containers into a single one. Objects are inserted into the spool
through a contextual menu option run on an already existing object.

TOLBase offers many other facilities for editing .tol programs and for visualising the different

object types that can be created. These facilities will be explored further in following chapters, as
we go through all the different types of data available.

Using just a sample in figure 1.5.2 we can see a TOL session in which 3 expressions have been
evaluated in theconsole, where a time-series has been charted and a.tol file has been opened for
editing.

1 Introduction TOL Manual(ed.1) 13

Figure 1.5.2: TOLBase showing some of its functionailty: the TOL code evaluation console,
time-series charts and file-editing.

To run the sentence-set of sentences written in the console we can use theCompile button. The

action associated with this button is the evaluation of all the expressions selected in the console,
or all of the console code if there isn't an active selection. This action is also associated with the
F9 key and is available in the contextual menu displayed on the console.

TOL prevents the creation of an object with a pre-existing name on the grounds that we wish to
promote the continual evaluation of the piece of code we're trying to create. However,

functionality does exist to destroy created objects, The Decompile button , available in the

console, destroys objects created in previous evaluations which are accessible under the Console

Objects node in the object inspector. This action is linked to the F8 key.

We may also find the syntax-check function very useful. It allows us to verify if the written TOL
code follows the language's syntactical rules, without having to evaluate the code and the

resulting creation of TOL objects. This option is available via the Syntax button and is

associated with the F7 key. Sometimes, the error message that TOL emits is a syntactic error and

it can be difficult to find out exactly where it is located. In such cases, one technique that may be
of use is to apply the syntax-check to selected pieces of code until isolating a piece small enough
for diagnosis

TOLBase keeps a history of evaluated expressions in an internal file in the console. This archive

can be recovered using the action associated with the button Show history file , which opens a

file-editing window which shows the historial of commands compiled on the console in reverse
chronological order.

The editing window also offers previous functionalities, as well as the classic text-editor
functions. In cases of edited files, evaluation results appear in the object inspector as a node

1 Introduction TOL Manual(ed.1) 14

beneath a node.Archivos Incluidos. This file node contains the sub-tree whose nodes are TOL

objects resulting from the evaluation. For this reason, destroying the content of an evaluated file
causes the deletion of memory belonging to this file and its descendents.

2 The TOL language TOL Manual(ed.1) 15

2 The TOL language

2.1 Basic notions

2.1.1 Syntax

As we can see in the Introduction, TOL is an interpreted programming language, and its code
sentences can be run without any previous processing.

If using TOLBase, we have some added utilities at our disposal. These permit us to compile and
decompile code sentences or .tol files, organise code or inspect variables. Nevertheless, in this

section about syntax we'll stick to the use of TOL as a language regardless of the application.

In TOL, the term compile refers to the action of interpreting a particular code, carrying out the
actions indicated and creating the stated variables.

Throughout this chapter, we will incorporate lines of code for illustrative purposes and indicate
the output that the TOL interpreter produces upon their compilation.

As a rule, TOL doesn't return any output upon compiling code, leaving the output for notification
messages, such as warnings and errors. To check the result of our actions we have to request a
print-out or inspect them using the TOL graphic interface.

Grammars

TOL has a variety of data-types at its disposal. These are known as grammars, and they are used
to construct code sentences. Practically every sentence in TOL returns one of these variables.

Grammars recognised by TOL are: Anything, Real, Complex, Text, Set, Date, TimeSet,

Serie, Polyn, Ratio, Matrix, VMatrix and NameBlock.

Please bear in mind that the grammar Anything isn't strictly a type of variable; rather it is used

to express any grammar in a general way.

Syntax

The basic syntax of TOL sentences is a grammar, the sentence code, as well as a full-stop and
comma to finish.

<Grammar> <code...>;

In the examples of TOL code in this document we use the symbols <> (angle brackets/chevrons)

to indicate that this part has been substituted by a valid expression. Bear in mind that these do
not form part of the syntax.

Other characteristics of the language to be aware of are :

• It is case-sensitive.

• It allows lines to be split to make them easier to read. TOL sentences don't end with the

line feed but with a full-stop and comma.(;).

Sentences automatically pass a syntax check prior to compilation. If the test is failed, compilation
isn't carried out and an error message is shown to enable detection.

2 The TOL language TOL Manual(ed.1) 16

Code comments (// y /* */)

A good habit when writing code is to accompany it with notes to allow for easier understanding.
They also help us to understand why a particular decision was taken.

 TOL<t1/>, as other languages, has two ways of commenting on lines of code:

• A double forward-slash (//) to comment on a whole line or from where it is placed to

the end of the line.

• The forward-slash/asterisk and asterisk/forward-slash combinations (/* y */). These

allow us to close off the part of the code that isn't to be compiled, acting as if they were
brackets. Commenting is possible in this way and can even be done several lines at a
time.

For example

// The variable "sum" is created with the result 1+1
Real sum = 1+1;

2.1.2 Variables

As has already been hinted at, TOL programming strongly supports the creation of variables. To
define a variable, we must allocate a value to it. TOL doesn't allow for variables to be created
without this happening.

Allocation (=)

To create a variable we need to use the operator = (signo igual). The syntax is:

<Grammar> <name> = <value>;

For example

Real a = 1.5;
Text b = "Hello";

Although in TOL sentences always return a variable, we don't have to assign a name to it if
we're not interested in using it.

For example

Real 1.5;
Text "Hello";

Variable names

 Variable names in TOL con be built with any combination of alpha-numeric characters as long
the first character isn't numeric.

Although TOL allows the use of the extended ASCII character set of our system (generally
LATIN1), to choose names we recomend that you only use standard ASCII characters.

We now move on to take a look at the various different character sets, according to their
possible uses:

2 The TOL language TOL Manual(ed.1) 17

Capital letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

Lower case letters abcdefghijklmnopqrstuvwxyz

Other characters considered alphabetic _

Numbers 0123456789

Other characters considered numeric #'.

Characters considered to be operators !\"$%&()*+,-/:;<=>?@[\\]^`{|}~

Table 2.1.1: Classification of ASCII characters in TOL.

Capital letters ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞŸŠŒŽ

Lower-case letters àáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿšœž

Other characters considered alphabetic ƒªµºß

Characters considered to be operators
(currently ignored)

€‚„…†‡ˆ‰‹‘’“”•–—™›
 ¡¢£¤¥¦§¨©«¬-®¯°±²³´¶·¸¹»¼½¾¿×÷

Tabla 2.1.2: Classification of extra LATIN1 characters (ISO 8859-1) in TOL.

Although the criteria for choosing variable names can be quite varied, here we include a few
suggestions as guidance:

• Begin names in lower-case, reserving names with capital letters for global variables;

• Use the styleCamelCase to join words together (each new word begins with a capital
letter). Alternatively, use a valid separator i.e. a full stop (.) or an underscore(_) ;

• Avoid using abbreviations whenever possible;

• Only use one language when making up names, preferably English or the local language.
Also, take care with spelling and grammar.

• Once chosen, use selected criteria consistently.

Reallocation (:=)

The majority of variables in TOL allow for reallocation; that's to say that a change in their value.
To do so, we must use the operator := (colon-followed by equals sign).

For example

Real a = 1;
Real a := 2; // 'a' is reallocated

If we use the allocation operator(=) it will result in an error:

Real a = 1;
Real a = 2;

ERROR: [1] Variable 'a' already defined as "a "

It has not been possible to create the variable "Real a".

ERROR: [2] Conflict between variables.
 Attempt was made to modify "a" using variable "a"

Allocation by value

Note that the allocation of the majority of grammars in TOL is by value, so that each allocation
builds a new variable.

For example

Real a = 1; // 'a' is created with the value 1
Real b = a; // 'b' is created with the value of 'a' that is 1
Real a := 2; // The value of 'a' is changed to 2

2 The TOL language TOL Manual(ed.1) 18

Real b; // but 'b' continues to value 1

2.1.3 Numbers (Real)

 The grammar Real is a data-type that TOL has at its disposal for the
management of all types of real numbers. It doesn't, therefore,

distinguish between integers and floating point numbers.

For example

Real a = 1;
Real b = 0.25;
Real c = Sqrt(3);
Real d = -1/2;

Unknown value (?)

 TOL has a special real value at its disposal. This is the unknown

value denoted by use of a question mark (?).

Real n = ?;

It is also the value offered by some mathematical functions when the returned value doesn't
exist or isn't a real number:

Real Sqrt(-1);
Real Log(0);
Real ASin(3);
Real 0/0;

Other real numbers

Some other special real values have been installed in TOL<t1/>, such as:

• The number is: Real E (2.718281828459045)

• Pi (π): Real Pi (3.141592653589793)

• Infinity: Real Inf (1/0)

• The value real true: Real True (1)

• The value real false: Real False (0)

• Elapsed real time: Real Time (variable value)

Operators and mathematical functions

As well the more familiar logical and artihmetic functions, TOL also has an assorted range of
mathematical and statistical functions at its disposal. We will now take a look at some of these
functions through the use of examples. For more detailed information, please consult the
relevant documentation for these functions..

Examples:

// We generate a random number between 0 and 1000
Real x = Rand(0, 1000);
// We find its integer part and its decimal part:
Real n = Floor(x);
Real d = x-n;

// The following approximation is commonly used:
// Log(1+x) ~ x
// when 'x' is small.
// We calculate the error of the approximation:

2 The TOL language TOL Manual(ed.1) 19

Real log_1_plus_d = Log(1+d);
Real relative_error = Abs(log_1_plus_d - d)/log_1_plus_d * 100; // en %

// Find my own version of pi
// taking advantage of pi/4 being 1
Real my_pi = 4 * ATan(1);

Complex numbers (Complex)

 TOL also includes a data-type capable of managing complex numbers,

namely the grammar Complex.

The declaration of a complex number is made in its binomic form as the sum of a real and an
imaginary part. This is the product of a real number and an imaginary unit: Complex i.

For example

// A complex number can be created by indicating its real and imaginary parts:
Complex z = 3 - 2*i;

The following functions are available to us to recover the real and imaginary parts of a complex
number. They can also be used to obtain the module and argument of its polar notation:

• The function CReal for the real part.

• The function CImag for the imaginary part.

• The function CAbs for the absolute value or complex number module.

• The function CArg for the argument or complex number phase.

For example

// Let z be a complex number:
Complex z = 3 + 4*i;
// The real part and imaginary parts can be obtained with:
Real z_re = CReal(z); // -> 3
Real z_im = CImag(z); // -> 4
// The module and argument (of the polar notation) with:
Real z_mod = CAbs(z); // -> 5
Real z_arg = CArg(z); // -> 0.9272952180016122

As well as conventional arithmetic operations, we can use the (virgulilla) operator. This allows
us to obtain the conjugate of the number on which it is operating. For example:

Complex z = 3 + 2*i;
Complex u = z / CAbs(z); // (0.832050294337844)+i*(0.554700196225229)
Complex uC = ~u; // (0.832050294337844)+i*(-0.554700196225229)

Note that some of the functions operating on Real and returning Real could return an unknown
value. This could have an implementation whose return value could be a valid complex number.
For example:

Complex Sqrt(-1); // (0)+i*(1)
Complex Log(-0.5); // (-0.693147180559945)+i*(3.14159265358979)

2.1.4 Text strings (Text)

The grammar Text allows us to create variables with text strings of undefined length. Text

strings must be enclosed between speech marks ("").

To place speech marks("), as well as some other special characters, in the appropriate text

string, the backslash(\) is used as an escape character.

2 The TOL language TOL Manual(ed.1) 20

Speech marks " (ASCII 34) \"
Backslash \ (ASCII 92) \\ Where no ambiguity exists, simple is accepted.
Line feed (ASCII 13) \n It is also possible to enter it explicitly.
Tabulation (ASCII 9) \t It is also possible to enter it explicitly.

Table 2.1.3: escaped characters in TOL text strings.

For example

Text "The word \"subcontinental\" contains all five vowels";
Text "There are two letter-cases:\n * Capital letters.\n * Lower-case
letters.";

Note that the last string could also be written as:

Text "There are two letter-cases:
 * Capital letters.
 * Lower-case letters.";

Messages (WriteLn)

One function (very frequently used for programming) exists that allows messages to be written
in the interpreter output. This function is especially peculiar in that it doesn't have a return

value. It is available in two formats: Write y WriteLn. The use of the latter of these two is

much more widespread, it adds a line-feed to the end of the message without having to explicitly
include it.

WriteLn("Hello world");

Hello world

Operations with strings

We often wish to modify or edit a text string. Sometimes we even find strings that host certain
information that we wish to obtain. To do this TOL has certain functions available to help us.

Here, we demonstrate some of them via means of an example. For more detailed information,
please consult the relevant function documentation<t1>.

Example:

// We have a string that contains an attribute value
// which we wish to extract.
// The value which interests us can be found after the character ':'
Text string = "language:es";
// We locate the position of the character ':'
Real position = TextFind(string, ":");
// We determine the length of the string
Real length = TextLength(string);
// We obtain the value of the desired string
Text language = Sub(string, position+1, length);
// Send the value just found to the output
WriteLn("Configuración de idioma: '"+language+"'.");

Language configuration: 'es'.

2.1.5 Functions (Code)

Functions in TOL are a new type of variables, whose grammar is Code.

 The syntax to define a function is:

2 The TOL language TOL Manual(ed.1) 21

• The output's grammar. In TOL, every function should return a variable. If returning a
value is either unwanted or unimportant, then returning a real number is
recommended..

• The name of the function Éste operates under the same rules as el nombre in general.
As with all other variables, the name is optional.

• Arguments. Arguments separated between commas are placed between brackets (()).

For each argument, we must specify its grammar, along with the chosen function name.
Every function has to receive at least one argument. If the function does not need an

argument, it's recommended that a single Real argument is specified, whose name is

not used within the function body.

• The body. The different sentences of function code are indicated between braces (curly

brackets) ({}). The last line will be the function output. Occasionally it's not necessary to

specify a type for the last line executed.(;).

<Grammar> [<Name>](<Grammar> <name>[, <Grammar> <name>, ...]) {
 ...
};

In the above expression, angular brackets (<>) signify that the code has had to be appropriately

substituted. The square brackets ([]) indicate that the code is optional.

Examples:

// We create a function that returns the number of digits.
// of the whole part of a real number
Real IntegerPart_Length(Real number) {
 Real unsignedIntegerPart = Floor(Abs(number));
 // we determine the number of digits of the integer part.
 // making use of the fact that the numbers are in decimal base.
 Floor(Log10(unsignedIntegerPart))+1
};

// This function displays a greeting every time it's used.
// It doesn't need arguments and its output isn't of importance..
Real PrintHello(Real void) {
 WriteLn("Hello!");
1};
Real PrintHello(?); // // The unknown value ? is used to emphasise that its
value isn't important DELETE THIS SEGMENT

Hello!

Note that the code indentation isn't part of the language's syntax but is a practical and clear way
of writng functions.

Local scope ({})

Bear in mind that all the code contained between braces (curly brackets) ({}), such as that in

the body of a function, is evaluated in a temporary scope. This is later eliminated (except for its
output and final line), once the evaluation block is completed. In the block scope (local scope)
access is give to global variables as it is to those of other superior levels. This is done in the same
way as when accessing local variables, giving preference to the latter in the event of any
uncertainty.

For example

Text scope = "Global";

2 The TOL language TOL Manual(ed.1) 22

Real value = {
 Text scope = "Local";
 WriteLn("Scope 1: "<<scope);
 Real phi = Rand(0, Pi);
 Sin(phi)^2 + Cos(phi)^2
}; // -> 1
WriteLn("Scope 2: "<<scope);

Scope 1: Local
Scope 2: Global

2.2 Sets

2.2.1 Sets (Set)

The grammar that allows us to create sets is particularly useful. In TOL the variable type Set

represents the ordered set of other variables (including other sets). The set's elements can be
from different grammars and can be named or unnamed.

Double square brackets ([[y]]) are used to create a set, or alternatively, a function that

returns one.

For example:

Set digits = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]];
Set even_numbers = Range(2, 20, 2);
Set vowels = SetOfText("a", "e", "i", "o", "u");

Note that the syntax used for set creation continues being : grammar, name, equals sign and

content. The term Set makes reference to the object type, the noun set and not to the verb set,

which describes the action of allocation.

Simple square brackets are used to access the set elements ([and]) or the function Element

indicating the index (or name if applicable) of the desired element.

For example:

Set colours = [["red", "green", "blue"]];
Text first_color = colors[1];

Basic elements

The most basic elements about sets are related with the capacity to count, increase and decrease
their number of elements. Let's now list the functions that allow us to do this:

• The function Card allows us to know the size or number of the set, that is it say its

number of elements

• The function Concat (as the operator <<) allows us to create a new set, connecting (by

putting one after another) two or more sets together.

• The function Append allows us to add a new set of elements to a given set.

• The function Remove allows us to remove an element from the set.

For example:

// We create two sets, 's1' and 's2'
Set s1 = [["A", "E", "I", "O", "U"]];
Set s2 = [["Y", "W"]];
// We create a set 's' with the elements of 's1' and 's2'
Set s = s1 << s2; // equi
// We remove the last element of 's'

2 The TOL language TOL Manual(ed.1) 23

Real s_size = Card(s);
Set Remove(s, s_size);
// We add two new elements to 's'
Set Append(s, [["J", "K"]]);
Real s_size := Card(s);
WriteLn("Final size of 's': "<<s_size);

Final size of 's': 8

Empty set (Empty)

The syntax of double square brackets doesn't allow us to create an empty set. To do that, it's

necessary to make a copy of the special set Empty.

Set my_elements = Copy(Empty);

Allocation by reference

Bear in mind that the allocation of sets is by reference. This is in contrast to real numbers or
texts. This is to say that the new set isn't a copy, rather another reference or alias to access the
said set.

For example

Set a = [[1, 2]]; // 'a' is created with the numbers 1 y 2
Set b = a; // 'b' is created, which is a reference to said set 'a'
Set a := [[3, 4]]; // the content of 'a' is changed for the numbers 3 y 4
Real b[1]; // The values of set 'b' also changed, b[1] es 3

Copy (Copy)

To force the copy and creation of a new set, we can use the Copy function:

Set a = [[1, 2]]; // 'a' is created with the numbers 1 y 2
Set b = Copy(a); // 'b' is created as a copy of set 'a'
Set a := [[3, 4]]; // is the content of 'a' is changed
Real b[1]; // set 'b' is maintained and b[1] is 1

Nevertheless, although the <t0/>Copy<t1/> function allows for the creation of a new set, the
elements of each set are the same. If the elements of the original set change, the elements of the
copied set also change:

Set a = [[1, 2]]; // 'a' is created with the numbers 1 y 2
Set b = Copy(a); // 'b' is created as a copy of set 'a'
Real a[1] := 3; // if the value of 'a[1] is changed'
Real b[1]; // the value of 'b[1]' also changes and is now 3

DeepCopy (DeepCopy)

To be able to make a complete copy of a set, namely one of the set and all of its elements, we

can use the function DeepCopy:

Set a = [[1, 2]]; // 'a' is created with the numbers 1 y 2
Set b = DeepCopy(a); // 'b' is created as a complete copy of the set 'a'
Real a[1] := 3; // if the value of 'a[1]' is changed
Real b[1]; // the value of 'b[1]' is maintained and continues to be
1

Summary:

In table 2.2.1 we can see a summary of the internal TOL process in cases such as the ones
described above:

2 The TOL language TOL Manual(ed.1) 24

Set a = [[1, 2]] Real 1 is created.
Real 2 is created.
 Set [[]] is created and two real numbers are added.
Reference 'a' is created, which accesses the set.

Set b = a; Reference 'b' is created, which accesses the same set as 'a'.
Set c = Copy(a); Set [[]] is created, to which is added the elements of 'a'.

Reference 'b' is created, which accesses the new set.
Set d = DeepCopy(a); A new Real 1<t1/> is created.'

A newReal 2<t1/> is created'
The new set[[]] is created, to which these new real
numbers are added.
Reference 'b' is created, which accesses the new set.

Table 2.2.1: Internal TOL process in set creation.

Set characteristics

The flexibility of TOL when it comes to defining sets allows us to use them for a number of very
different purposes. We can identify different types of sets according to some of their
characteristics. Taking these into account, the sets could be:

• Ordered: The elements of a set being programmed, by their very nature, are always in
order. We use this characteristic to highlight the fact that the order of a set is important
and affects its functionality.

• Indexed: This characteristic is closey related with the order and both of them can be
used to locate an element in the set. For a set to be indexed, each of its elements have to
have a unique name. The indexing process consists of building an index that associates
element numbers with their positions and allows elements to be accessed by name.

• Simple or without repeated elements: Although when we talk of sets we think of a
collection of distinct elements, it's true to say that one sometimes may contain repeated
elements. We refer to a set as simple to highlight its absence of duplicate elements.

• Homogeneous : We say that a set is homogeneous when all of its elements are of the
same nature or consist of the same grammar.

Algebra of sets

As well as elemental operations with sets, <t0/>TOL<t1/> includes basic algebraic set
functions:

• The operator + for the union of sets.

• The operator * for the intersection of sets.

• The operator - for the difference of sets.

• The operator <: to check that an element belongs to a particular set.

Note that these operations are naturally defined for simple sets (without repeated elements). To

obtain a free set of repeated elements, we can use the function Unique.

Example:

// Let's consider the following sets of characters
Set c1 = Characters("conjunto"); // (card: 8)
Set c2 = Characters("disjunto"); // (card: 8)
// We delete the repeated characters
Set s1 = Unique(c1); // an 'n' and an 'o' are removed (card: 6)

2 The TOL language TOL Manual(ed.1) 25

Set s2 = Unique(c2); // stay the same (card: 8)
// We operate with the two sets
Set union = s1 + s2; // (card: 9)
Set intersection = s1 * s2; // (card: 5)
Set s1_minus_s2 = s1 - s2; // (card: 1)
Set s2_minus_s1 = s2 - s1; // (card: 3)

Indexed sets

The SetIndexByName function enables us to index sets and speed up access by name. All set

elements to be indexed are required to have a name unique to the set.

As well as this function, we have other others available to us such as HasIndexByName, which

allows us to determine if a set is indexed or not. Another, FindIndexByName allows us to find

the index or position of an element in a set by name.

Remember that set elements can also be accessed by name using simple square brackets ([]).

Example:

// We create a set with values for each day of the week
// and we index the set:
Set weekdays = [[
 Real monday = 101;
 Real tuesday = 102;
 Real wednesday = 103;
 Real thursday = 104;
 Real friday = 105;
 Real saturday = 106;
 Real sunday = 107
]];
Real SetIndexByName(weekdays);
// We find the value for Friday
Real weekdays["friday"]; // -> 105
// We find the value for Saturday
Real sunday_index = FindIndexByName(weekdays, "sunday"); // -> 7
Real sunday_value = weekdays[sunday_index]; // -> 107

2.2.2 Control instructions

 TOL contains some control functions and instructions that allow us to modify the flow of
programme lines being run. We'll now take a look at some of the most important of these.:

Conditional instruction (If)

One of the most fundamental instructions of a language is If, which allows us to evaluate any

given code according to the value of a certain condition.

In TOL, If is implemented as a three-argument function (the last of these being optional), with

the following syntax.

Anything If(Real condition, Anything code_then[, Anything code_else])

The first argument is the condition, an expression that must return a true (1) or false (0) value.
The two following arguments correspond with the code to be run in each case respectively.

The output of If, as when defining functions, corresponds with the last line of code run.

If the value of the condition is a number other than zero, it will be considered true, unless it has
an unknown value. In this event, a warning will be displayed and a default value will be
returned.

2 The TOL language TOL Manual(ed.1) 26

For example

Real If(3+4==6, 1, 0);

Note that if the third argument isn't indicated and the condition isn't verified, no output will be

built. This isn't a problem unless we use the output of If e.g. by assigning it to a variable.

Real answer = If(3==4, 5);

ERROR: [1] answer couldn't be created.

Logical operations

To construct the condition value, we can make use of the following functions and logical
operators:

• The function And and the operator & that return true only if all arguments are true.

• The function Or and the operator | that return true, when at least one argument is true.

• The function Not and the operator ! that return the opposite of the value being applied.

And the following functions and comparison operators.

• The function Eq and the operator == that return true if arguments are equal.

• The function NE and the operator != that return true if arguments are not equal.

• The function LT and the operator < that return true when the first argument is smaller

than the second.

• The function GT and the operator > that return true when the first argument is greater

than the second.

• The function LE and the operator <= that return true when the first value is equal to or

smaller than the second.

• The function GE and the operator >= that return true when the first argument is greater

than or equal to the second.

When building logical constructions, it's worth remembering that when we negate an expression
every boolean operator is substituted for its opposite. Pairs are: And/Or, Eq/NE, LT/GE y

GT/LE.

For example

// Given three numbers:
Real a = Round(Rand(0, 1));
Real b = Rand(0, 6);
Real c = Rand(0, 9);
// and the following condition:
Real condition = (a==1 & (b>3 | c<=5));
// The opposite logical value to this:
Real Not(condition);
// can also be rewritten as:
Real a!=1 | (b<=3 & c>5);

Multiple conditional instruction (Case)

 The Case function is an extension of the conditional control instruction for more than one case.

It allows us to evaluate different codes as they verify one condition or another. Checks are
carried out and evaluated sequentially. Once a condition is fulfilled the corresponding code is
run and all other checks are interrupted.

2 The TOL language TOL Manual(ed.1) 27

The Case function always requires a pair of arguments. Arguments in odd positions return the

condition's logical value i.e. true or false. In the case of arguments in even positions, code is run
when they are fulfilled.

Syntax is:

Anything Case(Real condition1, Anything code1
 [, Real condition2, Anything code2 [, ...]]);

Conditional loop (While)

Another of TOL's most fundamental control instructions is While, which allows us to run code

cyclically whilst a condition is being verified.

The code's syntax is:

Anything While(Real condition, Anything code);

Example:

// A cycle is created to print out integer numbers.
// until a zero is found
// or until at least 100 numbers are displayed
Real print = 0;
Real rand_number = Floor(Rand(0, 100));
Real While(print<100 & rand_number!=0, {
 WriteLn(FormatReal(rand_number, "%2.0lf"));
 Real print := print + 1; // other has been printed
 "Another integer is generated."
});

Conditional arguments

Note that the control functions If, Case and While receive arguments that are lines of code

which will only be executed if the control condition is satisfied.

Other useful functions to create code run cycles, areFor and EvalSet. These functions do not,

however, use condition-code.

Simple loop (For)

The function For allows us to evaluate an incremental function relating to a set of whole

numbers. The function's syntax is:

Set For(Real begin, Real end, Code action);

The arguments begin and end are the two whole numbers that indicate the beginning and end

of the cycle.

The third argument must be a function of a single Real type argument:

Anything (Real integer) { ... }

The difference between the implementation of this loop in TOL and other languages is that in
TOL a function returns a set with as many elements as cycles; each element being the output of
the corresponding call to the function indicated as the third argument..

For example

// The following code builds a set with five sets
// each one of these with a whole number and its square.
Set table = For(1, 5, Set (Real n) {

2 The TOL language TOL Manual(ed.1) 28

 [[n, n^2]]
});

Note the difference with the previous control instructions. The third argument of For is a

function that could previously have been defined or, as is usual, defined inline. In order to
understand this better, take a look at the following alternative to the above code:

Set function(Real n) { [[n, n^2]] };
Set table = For(1, 5, function);

Also note that the implementation of For in TOL as a function that returns a Set facilitates the

construction of a data-set; one that in other languages is usally implemented in a way similar to
that demonstrated below:

Set table = Copy(Empty);
Set For(1, 5, Real (Real n) {
 Set table := table << [[[[n, n^2]]]]
 1
});

Loop over the elements of a Set (EvalSet)

The EvalSet is another control instruction that allows to apply a function to all of a set's

elements. As in the case of the For, the function returns a set with all of the function's answers

when acting upon each one of its elements..

Example:

// We obtain a set with indexes in ASCII
// of the character is a phrase:
Set chars = Characters("Hola mundo");
Set asciis = EvalSet(chars, Real (Text t) { ASCII(t) });

Note that as ASCII is a function that (unambiguously) receives a text as a unique argument;

which is the type of the elements of the set that can then be used as the second argument for
EvalSet without having to define a new function::

Set asciis = EvalSet(Characters("Hola mundo"), ASCII);

The complementary function to ASCII, that returns the character starting from its ASCII

number is Char.

An idea:

One way to widen the possibilities offered to us by the function For to another number set is to

use an EvalSet together with a Range function:

Set countdown = EvalSet(Range(10, 0, -1), Real (Real n) {
 WriteLn(FormatReal(n));
 Sleep(1)
});

2.2.3 Set queries

In addition to the operations relating to the aforementioned sets in previous sections, TOL also
contains functions for the selection, sorting and classification of sets.

Note that these functions allow us to carry out query actions relating to sets, simulating queries

from other languages - such as the SQL command SELECT and the ORDER BY and GROUP BY

clauses..

2 The TOL language TOL Manual(ed.1) 29

Selection (Select)

The Select function allows us to choose the elements of a set that verify a particular condition.

The function receives the set and condition function to be applied to each of its elements for its
selection and then returns the set with the selected elements. The function syntax is:

Set Select(Set set, Code condition_function);

Where the condition (condition_function) has to be a function with a single argument of

the same type as the elements of the set (in general Anything), and whose output has to be a

real value interpreted as a boolean value (0 means the element is not selected !=0 means the
element is selected):

Real <True|False> (Anything element) { ... }

Example:

// We have a set of normally distributed random numbers.
Set sample = For(1, 1000, Real (Real i) { Gaussian(0, 1) });
// we select those only greater than -1
Set subsample = Select(sample, Real (Real x) { x > (Real -1) });

Sorting (Sort)

The Sort function allows us to sort the elements of a set in a particular given order. The

function's syntax is:

Set Sort(Set set, Code order_function);

When the sorting criteria (order_function) must be a two-argument function of the same

type as the elements of the set (in general Anything), and whose output must be a real value

that indicates which of the two has to come first: -1 if it has to be the first argument, 1 if it has to

be the second argument 0 or if the sorting criteria isn't important:

Real <-1|1|0> (Anything element1, Anything element2) { ... }

 TOL has a function called Compare that allows for the checking and comparison of

different data-types. However, we can define our sorting criteria as normal.

Examples:

// Being the set of the letters of the word "set"
Set chars = Characters("conjunto");
// We can place them in alphabetical order:
Set sorted = Sort(chars, Compare); // [["c","j","n","n","o","o","t","u"]]

// Being the set of name-value pairs:
Set pairs = [[
 [["alpha", 2.3]],
 [["beta", Real -0.5]],
 [["gamma", 0.4]],
 [["delta", 8]]
]];
// We can order them from greatest to smallest value in the following way:
Set Sort(pairs, Real (Set pair1, Set pair2) {
 (-1) * Compare(pair1[2], pair2[2])
});

2 The TOL language TOL Manual(ed.1) 30

Classification (Classify)

The Classify function allows us to group set elements together in nine sets (or classes),

according to a particular equivalence relationship.

By default, the classify function (Classify) expect in the second argument an order relation in

the same way as the (Sort) function, this will be used as an a equivalence relation, grouping in

the same set all the elements for which the relation is evaluated to 0 when compared pairwise.

For example

// Being the set of the letters of the word "set"
Set chars = Characters("conjunto");
// If we group them together using the Compare function we will find 6 groups.
// Two of these (the 'o' group and the 'n' group) with two elements.
Set groups = Classify(chars, Compare);
Set EvalSet(groups, Real (Set group) {
 Text firstElement = group[1];
 Real size = Card(group);
 WriteLn("El grupo de las '"<<firstElement<<"' tiene "<<size<<" elementos");
 Real 0
});

The 'c' group has 1 element.
The 'j' group has 1 element.
The 'n" group has 2 elements.
The 'o' group has 2 elements.
The 't' group has 1 element.
The 'u' group has 1 element.

The function gives us the option of indicating the type of relationship used for classification. The
complete syntax of the function is:

Set Classify(Set set, Code function[, Text relationType="partial order"])

For example, if we wish to sort a set in the most natural possible way, using the equivalence
relationship that tell us if two elements are equal or not, we indicate "equivalence" as the

third argument. For example

// Let's consider a set of natural random numbers:
Set numbers = For(1, 100, Real (Real i) { Floor(Rand(100, 1000)) });
// We classify it by group according to its last number:
Set groups = Classify(numbers, Real (Real number1, Real number2) {
 Real unit1 = number1 % 10; // last digit of the first number
 Real unit2 = number2 % 10; // last digit of the second number
 unit1==unit2
}, "equivalence");

2.2.4 Structures (Struct)

Although a set can consist of any type of element at all for without any particular reason for it
being there, we can single out 2 types for their content:

• Container type sets: those which contain an undefined number of elements of a
homogenous nature. For example, containers are a set of study units, the set of open
data-base connections. or one of these simple sets:

// Odd numbers smaller than 100
Set container1 = Range(1, 99, 2);
// Lower-case ASCII lettes
Set container2 = For(97, 122, Text (Real ascii) { Char(ascii) });

2 The TOL language TOL Manual(ed.1) 31

• Entity sets: these contain a defined number of elements. These are commonly in order,
with a specific meaning but not necessarily homogenous. They represent the unit of a
particular concept. Normally, multiple elements can exist or be created with the same
characteristics or structure. Examples of entities would be the coordinates of a matrix
element (a row-column pair), function arguments or some of these simple sets :

// A substitution rule: the first text will be substituted for the second.
Set entity1 = [["á", "a"]];
// Function characteristics: name, output, number of arguments
Set entity2 = [["Char", "Text", 1]];

Structures

It is highly desirable that entity sets follow a predetermined stucture, in a way that leaves no
doubt as to the meaning of each element and facilitates its use.

In TOL, the concept of set structure exists under a special definition named Struct. The

structures (namely of type Struct) are a type of information that perform the role of a

specialised Set type grammar. They also allow for the construction of structured sets.

Definition of structures

The definition of a structure contains both the total number and type of elements that each set
that we create will have. As well as having the element type in the definition of the structure, we
assign it a name with which it can be clearly identified.

To define a new structure, we have to outline the name and grammar of each field using the
following syntax:

Struct @<StructName> {
 <Grammar1> <Field1>;
 <Grammar2> <Field2>;
 ...
};

where the code appears between angle brackets (<>) it's necessary to substitute it for its

corresponding value.

Example:

// We define @Vector3D to represent tridemensional vectors:
Struct @Vector3D {
 Real X;
 Real Y;
 Real Z
};

Note that the names of these structures have to begin with the character @ (at). In this way they

are clearly distinguished from other variables; as on occasions they are syntactically processed
in a way that has more in common with a grammar than with a variable.

Structured sets

We refer to the objects created according to the definition of a structure as structured sets. Being
sets, they are subject to the same processing as all others (Set variables).

To create a structured set we use the name of the structure as if it was a function that had as
many arguments as the structure has elements:

2 The TOL language TOL Manual(ed.1) 32

Set set = @<StructName>(<value1>, <value2>, ...);

For example

If to create a set with three real numbers we use;

Set set = [[1, 2, 3]];

To create a structured set of type @Vector3D, we have to do:

Set vector3D = @Vector3D(1, 2, 3);

We can also add a structure to a pre-existing set that agrees with the definition of the structure

(in both the number and type of its elements), using the function PutStructure. For example

Set set = [[1, 2, 3]];
Set PutStructure("@Vector3D", set);

Access to elements (->)

The structuring of entity sets serves a number of purposes. It reinforces the character of this
type of set, it ensures a certain amount of coherence between the number and type of its
elements, and it facilitates access by field-name.

To access elements by field-name we use the arrow operator (->) with the syntax:

<Grammar> element = structuredSet-><FieldName>;

or the function Field equivalent:

<Grammar> element = Field(structuredSet, "<FieldName>");

For example

Set vector = @Vector3D(4, 3, -2);
Real coordZ = vector->Z; // es equivalente a vector[3]

Note that the name of an element doesn't need to correspond to its name in the structure:

Real a = 5;
Set vector = @Vector3D(a, 1-a, 0);
WriteLn("El nombre de la coordenada X es: '"<<Name(vector->X)<<"'");

The name of the coordinate X is: 'a'

Information about structures

To find out which are the defined fields in a structure we can use the StructFields function,

which returns a set with the characteristics of each element. For example

Set StructFields("@Vector3D");

Note that this function receives a text with the name of the structure as an argument.

To find out a set's name, and whether it is structured or not, we can use the function
StructName.

2.3 Statistics

TOL is a programming language strongly geared towards statistics. As such, it includes a wide
variety of tools for statistical data analysis, both from a descriptive and inferential perspective.

2 The TOL language TOL Manual(ed.1) 33

2.3.1 Descriptive statistics

To compute statistics over set of reals numbers, TOL has a set of functions that allow an
undefined number of real arguments.

Real <Function>(Real x1, Real x2, ...);

In addition to the arithmetic functions Sum and Prod, that add and multiply real numbers

respectively, it's worth highlighting the following functions that allow us to collect data:

• Averages such as the mean (or arithmetic mean) (Avr), the geometric average

(GeometricAvr) or the harmonic average (HarmonicAvr).

• Dispersion methods such as variance (Var) or standard deviation (StDs).

• Data-distribution methods: the values maximum (Max) and minimum (Min), median

(Median or a quantile with any p probability:

Real Quantile(Real p, Real x1, Real x2, ...);

• Other methods related to moment distribution such as asymmetry

coefficient(Asymmetry) or the Kurtosis coefficient (Kurtosis), and in a more general

way any order moment n, centered (CenterMoment) or not (Moment):

Real Moment(Real n, Real x1, Real x2, ...);
Real CenterMoment(Real n, Real x1, Real x2, ...);

Missing data (?)

Bear in mind that real data with an unknown value (?) is treated as missing data by all these

statistical functions. This means that this data isn't taken into account, or is disregarded from the
calculattion.

For example

Real Sum(2, 3, ?, 4, ?); // -> 9
Real Avr(2, 3, ?, 4, ?); // -> 3

Statistics about sets

These same statistics can be obtained about sets of real numbers. To do so, use the

corresponding functions for sets called Set<Statistic>.

For example

Set values = SetOfReal(1.0, -0.3, 0, 2.1,0.9);
Real mu = SetAvr(values);
Real sigma2 = SetVar(values);

2.3.2 Probability

In probability theory, a random variable represents a variable whose values correspond with the
fulfillment of (non-deterministic) random Stochastic phenomena. These values could be, for
example, the values of an experiment which hasn't yet been carried out, or those of a currently
existing but unknown value.

2 The TOL language TOL Manual(ed.1) 34

Probability distributions

Although the values of a random variable remain undetermined, we can still find out the
probability associated with the occurrence of any given value. The relationship that assigns
probability to different values is known as probability distribution.

Random variables, as well as their probabilty distributions can be discrete or constant. This is
dependent on whether their values are restricted to a finite (or infinitely countable) set or not.

Discrete distributions

Each one of the different values that a discrete random variable can adopt has a certain
associated probabilty. The function that returns this probability is known as probability function.

TOL includes the probability functions of the main discrete distributions, with the following

naming conventionProb<Distribution>:

• Binomial distribution: ProbBinomial.

• Negative binomial distribution: ProbNegBinomial.

• Poisson distribution: ProbPoisson.

• Geometric distribution: ProbGeometric.

• Hypergeometric distribution: ProbHyperG.

• Discrete uniform distribution: ProbDiscreteUniform.

Similarly, we can obtain the corresponding distribution function. This is defined as the
probability of the variable taking a value more or less equal than a given, following the
nomenclature: Dist<Distribution>.

The inverse of the distribution function. It allows us to find the value for which the accumulated

probability is a given: It's implemented as: Dist<Distribution>Inv.

Constant distributions

The infinite possible values of a constant random variable don't have an associated probability,
rather a probability density that allows us to determine the probability of a value found in a
particular interval.

The function known as density function is implemented in TOL asDens<Distribution> for

the main distributions of constant probability. The following of these are of particular interest:

• Chi-squared distribution: DensChi.

• Exponential distribution: DensExp.

• T distribution of Student: DensT.

• Normal distribution: DensNormal.

• Log-normal distribution: DensLogNormal.

• Gamma distribution: DensGamma.

• Beta distribution: DensBeta.

• F distribution of Snedecor: DensF.

• Uniform distribution (constant): DensUniform.

2 The TOL language TOL Manual(ed.1) 35

As was the case with discrete distributions, TOL also offers the corresponding distriubtion
functions, and their inverses, with the nomenclature: Dist<Distribution> and

Dist<Distribution>Inv respectively.

Random numbers

To allow the sampling of random variables whose probability distribution is known, TOL
includes functions generated by random numbers.

For example, the Rand function allows us to generate a random number from the uniform

distribution for a given interval.

A pseudo-random number generator, which relies on a seed value, is used to generate these
sequences of random numbers. The seed value, which runs upon starting a TOL session, can be
consulted or modified via the functions GetRandomSeed and PutRandomSeed respectively.

Another very commonly used function to obtain random numbers is the Gaussian function,

that allows us to obtain realizaciones of a normal o Gaussian distribution.

In addition to the two functions we've already touched on, TOL has functions at its disposal to

show common probability distributions. These include chi squared (RandChisq), exponential

distribution, (RandExp), gamma distribution (RandGamma) and log-normal

(RandLogNormal).

2.3.3 Matrices (Matrix

Although TOL generally allows us to work with any real-number sets, it introduces a new type of

variable, Matrix, which represents the matrices and bidimensional sets of real numbers.

Matrices can be built as a number table following the syntax outlined below:

Matrix <m> = ((<m11>, <m12>, ...), (<m21>, <m22>, ...), ...);

For example

Matrix a = ((1, 2, -3), (4, -5, 6));

Bear in mind that all rows have to have the same number of columns.

We can also build row matrices (of a single row) or column matrices (of a single column) using

the Row and Col functions respectively.

For example

Matrix row = Row(1, 2, -3);
Matrix column = Col(1, 4);

Matrix elements

The number of rows and columns can be obtained via the Rows and Columns functions

respectively.

To access matrix elements we can use the MatDat function, which returns the required element

value upon us indicating the relevant row and column. To modify the value of an element, we use

the PutMatDat function, indicating the new value as a third argument.

2 The TOL language TOL Manual(ed.1) 36

Matrix composition

TOL includes two operations that allow us to form matrices linking matrices by rows or
columns:

• The operation << (and the ConcatRows function) to link matrices by rows.

• The operator | (and theConcaColumns function) to link matrices by columns.

As is logical, to link by row, matrices have to have the same number of columns. Similarly, to
link by columns, matrices must have the same number of rows.

For example

Matrix a = ((1, 2), (4, 5));
Matrix b = Col(3, 6);
Matrix c = Row(7, 8, 9);
Matrix (a | b) << c;

In the same way that we can combine matrices to compose a larger matrix, we can obtain
submatrices from any given matrix. This is outlined in the following functions:

• TheSubRow function allows us to form a matrix consisting of a selection of rows from

another matrix. It receives the original matrix and an index set as an argument.

• The SubCol function obtains a matrix from a column selection.

• The Sub function allows us to form a submatrix by indicating the row and column of the

first element, and the height (number of rows) and width (number of columns) of the
submatrix.

For example

Matrix a = ((1, 2), (3, 4), (5, 6)),
Matrix SubRow(a, [[1, 3]]); // -> ((1, 2), (5, 6))

Operations with matrices

As well as the arithmetic operators, + and - that allow us n to add and subtract 2 matrices, or

one matrix and a real, TOL has the operator* to carry out matrix multiplication.

Remember that matrix multiplication can take place between two rectangular matrices when the
number of columns in the first coincides with the number of rows of the second.

Other characteristic functions of the matrices installed in TOL are:

• Matrix transposition: Tra.

• Matrix inversion using the Guass inversion method: GaussInverse.

• Cholesky factorisation for symettrical and positive matrices. The Choleski function

gives us the inferior triangular matrix (or Cholesky triangle) of the decomposition.

Element by element operations

To carry out element-by-element matrix multiplication (known as Hadamard's product) or the
element-by-element quotient:

• The operator $* (or the WeightProd function) for the product.

• The operator $/ (or the function WeightQuotient) for the quotient.

2 The TOL language TOL Manual(ed.1) 37

Note that the operator ^, works on matrices in a way consistent with Hadamard's product,

acting individually on each element. This is true with all sets of mathematical functions to do
with real numbers (exponential, trigonometrical, hyperbolic, etc)

It's true that the larger part of mathematical functions to do with real numbers have a matrix-
based version, in general we can apply any function to all of a matrix's element using the

EvalMat instruction, which is similar to (EvalSet). This instruction goes through all of the

matrix's rows and columns.

For example

// We apply the function f(x) = x * Exp(x)
// to a matrix's elements, in two different ways:
Matrix a = ((1, 2, -5), (3, 0, 7));
Matrix b_1 = a $* Exp(a);
Matrix b_2 = EvalMat(a, Real (Real x) { x * Exp(x) });

We also have a conditional instruction for matrices, IfMat that allows us to build matrices with

a conditional structure.

For example

// We create a matrix by applying a logarithm to a pre-existing one
// and returning 0 if the element if less than or equal to 1.
Matrix a = ((1, 2, -5), (3, 0, 7));
Matrix b = IfMat(GT(a, 1), Log(a), 0);

Statistics about matrices

The statistics introduced in the section 2.3.1 can be obtained for matrices by using the

corresponding functions with the nameMat<Statistic>.

For example

Matrix a = Gaussian(100, 1, 0, 0.5);
Real a_mu = MatAvr(a);
Real a_sigma = MatStDs(a);

2.3.4 Linear models

Statistical models allow us to describe a random variable as a function of other variables. This
relationship isn't deterministic but rather stochastic, in the sense that the model is nothing more
than an approximate description of the mechanism generated by observations.

Linear regression (LinReg)

The simplest model that we can use to describe a random variable is that which can be explained
as a linear combination of other variables, plus a purely random component or white noise.

� ������
�

� 	

Where � is the observed variable that we wish to be described as (referred to as output of the
model), �� are the explanatory variables (or inputs of the model), �� are the parameters and 	 is
the unexplained part or model error.

Generally speaking, parameters that describe the relationship between variables are not known
and need to be estimated using the observations available from the variables:

2 The TOL language TOL Manual(ed.1) 38

In the case of the previous linear model, we only need to solve the corresponding linear
regression to obtain a parameter estimate. For this, TOL has the LinReg function, which solves

the expressed model using matrices.

For example

// We build a sample of random variable Y
// as the sum of two variables X1 y X2 + noise E
Matrix X1 = Rand(10, 1, 0, 10);
Matrix X2 = Rand(10, 1, 2, 5);
Matrix E = Gaussian(10, 1, 0, 0.1);
Real beta1 = 0.5;
Real beta2 = -0.3;
Matrix Y = X1*beta1 + X2*beta2 + E;
// We estimate the model: Y = X1*beta1 + X2*beta2
Set estimation = LinReg(Y, X1|X2);
Real estimated_beta1 = estimation["ParInf"][1]->Value;
Real estimated_beta2 = estimation["ParInf"][2]->Value;

Generalised linear models (Logit, Probit)

In the analysis of random variables we encounter some of a discrete nature that can't be
modelled naturally with a linear model of the type described above.

Nevertheless, when the values of this variable can be made to correspond with those of some
particular distributions, they can be rewritten with the help of a link function (
��
). This is what
is known as a generalised linear model.

E��� �
��
�� ������
�

�

Where E��� expresses the expectation of the random variable �.

When the random variable only takes two different values (dichotomous variable or Bernouilli),

we have two link functions (with domain in (0,1) and image of the whole real line) for the

construction of the generalised model:

• The logit function which is the inverse of the logistical distribution function.

• The probit function which is the inverse of the normal distribution function.

TOL has two maximum likelihood estimators Logit andProbit respectively, used for the

resolution of generalised linear models logit y probit. It has a similar syntax to LinReg..

// We create a dichotomous variable Y from a probability pY.
// built using the normal distribution function
// a linear combination of X1 and X2
Matrix X1 = Rand(500, 1, 0, 5);
Matrix X2 = Round(Rand(500, 1, 0, 1));
Real beta1 = 0.8;
Real beta2 = -0.5;
Matrix pY = EvalMat(X1*beta1 + X2*beta2, Real (Real x) { DistNormal(x) });
Matrix Y = EvalMat(pY, Real (Real x) { Real Rand(0,1)<x });
// We estimate the probit model: E(Y) = Probit(X1*beta1 + x2*beta2)
Set estimation = Probit(Y, X1|X2);
Real estimated_beta1 = MatDat(estimation[1], 1, 1);
Real estimated_beta2 = MatDat(estimation[1], 2, 1);

2 The TOL language TOL Manual(ed.1) 39

Configuration

The aforementioned estimators (Probit and Logit) make use of certain configuration

variables, created as global variables.

• The maximum number of iterations for iterative processes: Real MaxIter.

• Tolerance of numerical methods: Real Tolerance.

2.3.5 Virtual matrices (VMatrix)

Virtual matrices, grammar VMatrix, are a new type of data used for the declaration of matrices.

They encapsulate the processing of special matrices that can't be handled in an efficient way

with the Matrix type, allowing specialised internal polymorphic formats for various typesof

matricial structures.

Virtual matrices encompass various sub-types related to the following concepts:

• The engine(engine): Each calculation engine requires its own data-types ad-hoc to get
the most out of its algorithms. An attempt has been made to include the main systems of
matricial algebra to deal with the most commonly occuring problems with regard to
dense, sparse (or sparse) and structured (Toeplitz, Vandermonde, etc.) matrices. This
even extends to the ability to define matrices as generic linear operators. The engines for
which the virtual matrix interface currently exist are: BLAS&LAPACK y CHOLMOD.

• Cell-type(cell): Only the cell-type Real has initially been implemented with double

precision (64 bits) but it can be expanded to simple precision (32 bits) and high
precision (80 bits) where packages allow.

• Storage mode (store): Each calculation engine offers different ways to store data that
define a matrix corresponding to its internal structure and that type of algorithms that
will be run on it.

The operations possible with virtual matrices depend on each sub-type, which complicates their
use. This is somewhat compensated by the fact that access is available to highly efficent and
specialised methods.

Here we take a closer look at a few types of virtual matrices.

Dense matrices (Blas.R.Dense)

The matrix type Blas.R.Dense that is included in the basic data-type of BLAS&LAPACK in the

native format of FORTRAN. Here, the cells of each column are consecutive, in contrast to the
format by row considered as native in C/C++ and using the type Matrix.

Sparse matrices (Cholmod.R.Sparse)

Sparse matrices (sparse) are used for solving large systems of linear equations, in which the
matrices are largely formed of zeros.

The virtual matrix Cholmod.R.Sparse is the basic type of sparse matrix CHOLMOD and offers

a wide range of implemented operations very efficiently.

Other more specific types introduced together with this are:

2 The TOL language TOL Manual(ed.1) 40

• The typeCholmod.R.Factor: a specialisation used to store the Cholseky factorisation

of a sparse matrix in an especially effective way, to solve the linear systems associated

with the said decomposition. Take a look at the descriptions of the CholeskiFactor

and CholeskiSolve functions.

• TypeCholmod.R.Triplet: which is applied for external storage purposes and

interfaces with other systems. They are treated as file-column-value groups that link the
value of the none-void cell to the corresponding row and column number, one which
combines an important memory saving with sufficiently sparse matrices. Let's take a

look at the Triplet andVMat2Triplet functions.

Operations with virtual matrices

Virtual matrices, VMatrix, are implemented with a functionality similar to that of matrices, in

that we have similar sets of functions available to us. (Matrix):

• Access and editing of cells (with VMatDat y PutVMatDat).

• Operations with sub-matrices (for example: SubRow o ConcatColumns).

• Arithmetic operators (such as matrix multiplication * or Hadamard's product $*).

• Mathematical and logical functions (such as Log, Floor or LT).

• Statistics about the matrix (such as VMatAvr or VMatMax).

Note that in the functions in which it appears, the term Mat (from the functions of the Matrix

grammar) is substituted by VMat.

Creation of virtual matrices

The use of virtual matrices is linked to the use of particular functionalities, which are used as
input or output arguments.

To enable the consturction of virtual matrices we have a number of basic toold available to us.
These include Constant or Zeros for matrices that consist of identical cells, Eye or Diag for

diagonal matrices, or Rand and Gaussian for matrices with random numbers.

We can also use the following mechanisms for conversion between matrices:

• From matrices to virtual matrices: Mat2VMat.

• From virtual matrices to matrices: VMat2Mat.

• Between differing types of virtual matrices: Convert.

2.4 Time variables

2.4.1 Dates (Date)

One of the main characteristics that distinguishes TOL from other interpreted mathematical
languages is its tools for time structures. For this very reason that the name Time Oriented

Language was chosen in the first place.

The fact that we have left the presentation of TOL's time variables until this far into the manual,
doesn't take anything away from their importance. In fact, the opposite is true, as we need to
dedicate their own section to them, in order to provide a thorough explanation.

2 The TOL language TOL Manual(ed.1) 41

The main grammar for the management of time structures is no other than, Date, which is used

for representing time intervals and instants.

Dates in TOL are expressed in the following way:

Date and<year>[m<month:01>[d<day:01>]];

Where the code appears between angle brackets (<>), it has to be substituted by the

corresponding numeric values, square brackets ([]) indicate optional code and a semi-colon (:)

precedes values by default. The year must consist of four digits, while the month and the day are
indicated by two.

Examples:

Date y1992m07d25; // -> 25/07/1992
Date y2000; // -> 01/01/2000
Date y2007m03; // -> 01/03/2007

Although it's more common to use dates to indicate days or larger time intervals (such as weeks,
months or years), TOL allows us to state small fractions of the day, indicating the hour, minute or
second of the instant. The pattern is completed as follows:

Date y<year>[m<month:01>[d<day:01>[h<hour:00>[i<minute:00>[s<second:00>]]]]];

For example

Date y2011m11d11; // -> 11/11/2011 00:00:00
Date y2000m02d04h06i08s10; // -> 04/02/2000 06:08:10
Date y2012m09d10h13; // -> 10/09/2012 13:00:00

Dates and numbers

Dates can also be built explicitly from the numbers defined via YMD function, which can

optionally take up to 6 arguments. These being the desired year, month, day, hour, minute and
second.

For example

Date YMD(2011, 11, 11); // -> 11/11/2011 00:00:00
Date YMD(2000, 2, 4, 6, 8, 10); // -> 04/02/2000 06:08:10
Date YMD(2012, 9, 10, 13); // -> 10/09/2012 13:00:00

Inversely, we can obtain these numbers from the Year, Month, Day, Hour, Minute and

Second functions. These return the year, month, day, hour, minute and second of the selected

date respectively.

Another function of this kind, which is especially useful, is WeekDay which returns the day of

the week with the corresponding number from 1 to 7 (with 1 being Monday).

Special dates

TOL has certain special dates pre-installed:

• Today's date: Date Today (valor variable) .

• The current instant: Date Now (variable value) .

• Beginning date: Date TheBegin.

• End date: Date TheEnd.

• Unknown date: Date UnknownDate.

2 The TOL language TOL Manual(ed.1) 42

Note that while the Now variable also displays the hour, minute and second of the current instant

Today only returns the year, month and day (time 00:00:00).

Time index

Each date value has an associated number which depends on the number of days elapsed since a
given date, with the value 1 being ascribed to the first day of the year 1900.

The DateToIndex and IndexToDate functions allow us to change the date to a number or

the number to a date respectively.

For example

Real DateToIndex(y2000); // -> 36525
Real IndexToDate(41161); // -> y2012m09d10
Date IndexToDate(50000.5); // -> y2036m11d22h12

Note that the numeric value that Microsoft Excel ascribes to dates is similar apart from the fact
that Excel erroneously considers 1900 to be a leap year:

Real excel_time = DateToIndex(<date>) + 1; // from March 1900

Other systems for numbering time such as Unix_time (which evaluates all the seconds elapsed
since 1970), can easily be obtained from the TOL index via an arithmetic operation.

Real unix_time = (DateToIndex(<date>) - DateToIndex(y1970)) * 86400;

2.4.2 Dated (TimeSet)

With dates, we often state not just an instant but all of the time interval until the following

instant. That is to say that the day 1st of January 2012 (y2012) can represent the first day of

that year or the entire year.

To provide this added value to a date we must accompany it with a time-set (daily or annual for
the previous example), which allows us to know the following date.

In TOL there is a special data-type called TimeSet that represents a date/time-set. It acts as

support or a time domain, allowing a date to be understood as an interval.

Predefined time-sets.

TOL includes a set of pre-defined time-sets, which are very useful in this time domain function.
Out of those, we bring your attention to the following:

• Annual time-set, formed of all the first days of the year: TimeSet Yearly.

• Monthly time-set, formed of all the first days of the month: TimeSet Monthly.

• Daily time-set, formed of all days TimeSet Daily.

• Weekly time-set, formed of all Mondays: TimeSet Weekly.

• Quarterly time-set, TimeSet Quarterly.

• Half-yearly time-setTimeSet HalfYearly.

Operations with dates related to time-sets

There are two very useful functions to be used with dates that allow for the time-set to be used
as a time domain.

2 The TOL language TOL Manual(ed.1) 43

• The successor function of a date: Succ, which allows us to find a date a number of times

subsequent to another particular time-set.

• The date difference function: DateDif, which allows us to determine the time distance

between two dates in a time-set.

Example:

// The day before the 1st of March 2012 is:
Date prev_Mar.2012 = Succ(y2012m03, Daily, -1); // -> y2012m02d29
// as the year 2012 is a leap year.
// The number of days in the first quarter of 2012 is:
Real DateDif(Daily, y2012, Succ(y2012, Quarterly, 1)); // -> 91

Time-sets

A time-set can also be used to represent an arbitrary set of dates, a selection of all the dates in
another time-set.

One example installed in TOL is (Easter), which is notable for the fact it is a recurring holiday

with moving dates. This set represents all of the Sunday's included in Easter (according to
western Christianity).

With this criteria in mind, TOL includes two special time-sets:

• The set of all days: TimeSet C (which coincides with the daily time-set).

• The set without any days: TimeSet W.

Creation of time-sets

Whilst it's true that the set of predefined time-sets in TOL is sufficient in its time domain
function, we still require greater flexibility when it comes to date-sets. For this reason, TOL
includes a set of functions that allows us to define new schedules:

• The Y, M, D, H, Mi and S functions allow us to obtain time sub-sets. These are formed by

the dates of a year, month, hour, minute and second respectively.

• The WD function allows us to create a sub-set of dates according to the day of the week.

• The Day function allows us to create a time-set with a given date, while the

DatesOfSet function does the same with all of the dates in a set.

Time algebra

To make it easier to build time-sets, TOL also includes algebra set operations:

• The operator + and the Union function that allow us to join time-sets.

• The operator * and the Intersection function that allow us to obtain the

intersection of time-sets.

• The operator - that allows us to subtract all of the dates of one time-set from another.

• The Belong function that allows us to check whether a date belongs to a time-set or not.

Examples:

We can replicate the trimestral time-set, in order to illustrate the functions listed above.

TimeSet myQuarterly = D(1)*(M(1)+M(4)+M(7)+M(10));

To build a time-set with the days Monday to Friday:

2 The TOL language TOL Manual(ed.1) 44

TimeSet mondayToFriday = Daily-WD(6)-WD(7);

Or create a time-set with the first Sundays of each month, which, it goes without saying, are
found in the first 7 days of every month.:

TimeSet firstSundays = (D(1)+D(2)+D(3)+D(4)+D(5)+D(6)+D(7))*WD(7);

The interval function (In)

The In function allows us to restrict a time-set to a date-set, for example:

// All months between the years 2000 and 2012 (inclusive)
TimeSet In(y2000, y2012m12, Monthly);

Periodic function (Periodic)

The Periodic function allows us to obtain a periodic time subset (with a whole period), from

one of the dates of the subset.

For example, an alternative way to obtain the set of all Mondays, is to build a time subset of the
daily schedule with period 7:

// The dare used, 10/09/2012 is Monday
TimeSet mondays_alternative = Periodic(y2012m09d10, 7, Daily);

The successor function (Succ)

The Succ function allows us to transfer particular number of units inside another time-set to a

set of dates.

For example, to obtain the set formed of all last days of the month, which can vary from one
month to the next, we can seperate the set of first days of the month and move them a day back.

TimeSet lastDaysOfMonth = Succ(D(1), -1, Daily);

Note that the successor function for time-sets receives the second and third argument in an
order that differs from the successor function for dates:

Date Succ(Date date, TimeSet dating, Real integer);
TimeSet Succ(TimeSet timeSet, Real integer, TimeSet dating);

The range function Range is an extension of the successor function (Succ). It allows us to

create a time-set with an entire interval of movements. For example

// Set of the last three days of the month
TimeSet Range(D(1), -3, -1, Daily);

2.4.3 Time series (Serie)

A time series is a succession of chronologically-ordered data, in which each piece of data
corresponds to a partivular moment in a schedule. TOL differs from other languages in that it

includes a grammar called Serie, which is specifically designed for time-series management.

Unlimited time-series

When defining time-series TOL allows time-series to be created without restricting them to a
particular interval. We refer to these as unlimited time-series.

We can create these unlimited time series using some of the following functions:

2 The TOL language TOL Manual(ed.1) 45

Basics:

• The pulse function (Pulse), which returns a series with a value of 1 for the indicated

date and 0 for the rest. For example

Series pulse2012 = Pulse(y2012, Yearly);

• The compensation function(Compens) which returns a series with a value of 1 for the

indicated date, -1 for the next date and 0 for the rest.

• The step function (Step), which returns a series with returns a value of 0 until the

indicated date, and 1 from this date onwards.

• The trend function (Trend), which returns a series with a value 0 until the indicated

date, 1 on the indicated date itself and incrementally increases by one for the following
dates.

• The straight-line function (Line), which returns a series with values in the straight line

that passes through the two points indicated (date/value pairs).

Support in a schedule:

• The indictator function of a schedule (CalInd), which returns a series with a value of 1

when the date belongs to the schedule, and 0 when it doesn't. We anticpate that the
schedule of the series contains the schedule used in the definition. For example

// The daily series of the first days of the month:
Series day1 = CalInd(Monthly, Daily);

• The cardinal function of a schedule (CalVar. This returns a series with a quantity of

dates that have the schedule between a given date, and its successor in the series of the
schedule. We anticipate that the schedule of the series is contained in the schedule used
in the definition. For example

// The series of number of days of each month:
Serie num_days = CalVar(Daily, Monthly);

Randoms:

• The uniform distribution function (Rand), which returns a series of random values

between two given numbers.

• The normal distribution function (Gaussian), which returns a series of normally

distributed random values, with the average and standard deviation indicated.

On occasion, we use the name «inifinite series» to unlimited series, although more strictly
speaking, these will be just those which don't have an end but do have a beginning.

Delimited time series

To obtain temporales delimitadas series, we can use the SubSer function, which allows us to

restrict a particular interval. For example:

Serie SubSer(Pulse(y2012, Yearly), y2000, y2020);

We can also explicitly build series from the rows of a matrix:

Matrix data = (
 (1.2, 2.4, 1.5, 1.0, 3.1, 2.0),
 (0.8, 7.1, 1.1, 4.2, 5.1, 2.2)
);

2 The TOL language TOL Manual(ed.1) 46

Set MatSerSet(data, Yearly, y2000);

However, perhaps most interesting of all is obtaining them from a data-source, such as a file or
database. In order to see how to build time-series from different data-sources please look at
sections secciones 3.1.2 and 3.2.3.

To find out the start and end dates of a series, we can use the functions First and Last

respectively.

Bear in mind that TOL considers the previous and following unlimited series data as omitted.
This means that it tries to avoid starting and ending series with this value, automatically cutting
them as necessary.

For example

Matrix data = Row(?, 1.2, 2.4, ?, 1.0, 3.1, 2.0);
Series series = MatSerSet(data, Yearly, y2000)[1];
Date First(series); // -> y2001

Series data

To access the elements of a time-series, we can use the SerDat function, which returns the

series value for a given date. To modify it we use the PutSerDat function, indicating the date as

the first argument and the new value as the second.

Time-series operators

To work with time-series, we have the most common operators from operations with real
numbers at our disposal. The arithmetic operators (+, -, *, /) even allow us to operate between

a series and a real number, returning the time-series resulting from operating each value in the
series with the indicated number.

Bear in mind, that when working with two or more time-series, they must have the same time-
set. The operation will only be carried out on the intersection interval; that is to say on all fo the
dates that belong to the series.

Linking time-series

To enable us to complete the data in a series, we can use the operators << (with priority on the

right) y >> (with priority on the left). These allow us to link two time-series one after another,

indicating which set values have priority in the event of an overlap.

If we wish to explicitly control this overlap we can use the Concat function. This consists of

three arguments, which link two time-series together, using a specified date as the reference for
when until the data of the first series should be taken (from the left).

For example

Serie zeros = SubSer(CalInd(W, Yearly), y2000, y2008);
Serie ones = SubSer(CalInd(C, Yearly), y2005, y2012);
Serie cc1 = zeros >> ones; // SumS -> 4
Serie cc2 = zeros << ones; // SumS -> 8
Serie cc3 = Concat(zeros, ones, y2006); // SumS -> 6

2 The TOL language TOL Manual(ed.1) 47

Operations with time-series

We don't just have arithmetic time-series at our disposal. We have the entire set of mathematical
functions related to real numbers, (exponentials, trigonometric, hyperbolic, etc.). Once these are
applied to time-series, they act individually on each of the series's values.

Although most of the mathematical functions relating to real numbers are also available for time
series, generally speaking we can apply whichever function to all of the values of a set by using

the EvalSerie function (similar to EvalSet).

We also have a conditional instruction available for time-series, IfSer, which allows us to build

series with a conditional structure.

For example

// We create a series with omitted values as outline in the following example
Series series = MatSerSet(Row(1, 2, ?, 1, 3, ?, 4, 2), Yearly, y2000)[1];
// We substitute these unknown values for zeros.
Series IfSer(IsUnknown(series), 0, series);

Time-series statistics (<Statistic>S)

The statistical functions outlined in section 2.3.1 are also explicitly installed for time-series with
the following nomenclature: <Statistic>S.

To these, we can also add some others specifically aimed at time-series, such as:

• The number of pieces of data in a series: CountS.

• The first value of series: FirstS.

• The last value of a series: LastS.

Bear in mind that the syntax of all of these function allows for a pair of dates as the second and
third arguments. With these we can delimit the statistical application interval:

Real <Statistic>S(Serie series[, Date begin, Date end])

For example

Series series = SubSer(Gaussian(0, 1, Monthly), y2000, y2012m12);
Real mean = AvrS(series);
Real variance_2011 = VarS(series, y2011, y2011m12);
Real FirstS(series) <= MaxS(series); // -> True

Change of time-set(DatCh)

The aforementioned statistical functions are especially useful for changing the time-set of a
series to a superior one (less detailed and with greater intervals).

The DatCh function(dating change) allows us to build a series in a new time-set, using the data

of another, with the following syntax:

Serie DatCh(Serie series, TimeSet dating, Code statistic);

receiving the function that will be used as the third argument to obtain each value of the new
series from the data of an interval, and which must respond with the extended form of statistical
functions relating to time-series:

Real (Series series, Date begin, Date end)

2 The TOL language TOL Manual(ed.1) 48

It's necessary to use different statistics, depending on the nature of the data and change of time-
sets. For example, if the data represents the value of a magnitude that depends on the interval

size, we should add up the values with SumS when making the change of time-set. A typical case

would be a series with the sales of a particular product. If conversely, the value of the magnitude

doesn't change with the interval size, we can use a statistical average such as AvrS, or one that

lets us choose an interval value such as: FirstS, LastS, MinS or MaxS.

2.4.4 Finite differences. Polynomial delays. (Polyn)

For the analysis of time-series, as with sequences, it's very common to make use of polynomial

delays.

Finite differences perform a role in the study of time-series and difference equations similar to
that carried out in the analysis of functions and differential calculus.

Regular difference

Difference (or regular difference) is the name we give to the action and result of a time-series
which subtracts the immediately preceding value away from each value in a series.

If �� is a time-series, its difference is: ∆�� � �� � ����

To express differences, TOL includes a new data-type, the grammar Polyn . Using this,

polynomial delay operators which act on time-series can be represented.

Delay

The basic delay operator in TOL is Polyn B. This acts on a time-series by substituting the value

in a date for the value immediately preceding it. It can be said that the operator B moves each

item of data of the time-series one date forward.

To apply Polyn variables to time-series, we use : operator (semi-colon).

For example

Series X_t = SetSer(Range(1, 8, 1), Yearly, y2001);
Series X_t.minus.1 = B : X_t; // delay X_t
Series Dif.X_t = X_t - X_t.minus.1; // difference of X_t

We can see the results of previous operations in table form:

t 2001 2002 2003 2004 2005 2006 2007 2008 2009
X_t 1 2 3 4 5 6 7 8
X_t.minus.1 1 2 3 4 5 6 7 8
Dif.X_t 1 1 1 1 1 1 1

Table 2.4.1: Example of the result of applying a delay and a difference to a time-series in
table form.

Polynomials

If we apply the delay operator on subsequent occasions we can obtain delays and differences
superior to one. We can therefore define polynomial operators in a general way, as a linear

combination of powers of the delay operator B.

For example:

Polyn p = 1 + 0.5*B - 0.8*B^2;

2 The TOL language TOL Manual(ed.1) 49

Inversely, we can find out the grade and co-efficients of a given polynomial using the Degree

and Coef functions respectively.

Another very useful function is Monomes, which breaks a polynomial down into a set of

monomials for us.

Note that TOL implements the composition of the operator B as the product of variables of type

Polyn . This is done in a way that allows us to define order differences superior to 1 as powers

of the difference operator Polyn (1-B).

Polyn dif = 1-B;
Polyn dif_order.2 = (1-B)^2 // second difference

Seasonal differences

Seasonal differences are those in which each value of a series is substracted another a certain
number of instances previously.

If �� is a time-series, a seasonal difference � is: ∆��� � �� � ����

These differences are very useful when analysing time-series, especially in those which

demonstrate recurrence. For example, series in monthly time-sets which show annual cycles

allow seasonal differences of period 12.

Polyn dif_period.12 = 1-B^12; // seasonal difference

Seasonality shouldn't be confused with a difference in subsequent applications. For example, we

can say there is seasonal difference of order 2 and period 12:

Polyn dif_period.12_order.2 = (1-B^12)^2;

Advance operator

TOL has an advance operator, Polyn F, inverse to the delay operator.

Polyn B*F; // == Polyn 1

It acts on a time-series by substituting the value in a date for the value that comes immediately

after it.

2.4.5 Difference equations Polynomial quotients (Ratio)

In modelling, it's very common to use ecuaciones en diferencias to describe time-series under

analysis. De manera general podemos expresar la ecuación en diferencias que describe una serie �� como un polinomio de retardos ���� aplicado a esta serie igualado a una constante u otra

serie temporal ��.

������ � ��

TOL includes a new type of data, the grammar Ratio, to express the inversion of the polynomial

of delays, and with which we express the difference equation:

�� � 1���� ��

Thus, a variable type Ratio is defined as the quotient of two variables of type Polyn.

2 The TOL language TOL Manual(ed.1) 50

Here we see an example:

// We divide a series "y" and a polynomial "p"
// and we find the series "x" which verifies:
// p:y = x
Series y = SubSer(Gaussian(0, 1, Daily), y2000, y2000m12d31);
Polyn p = 1 - 0.5*B;
Serie x = p:y;

// We solve the difference equation and once more find "y" (y_new):
// y_new = (1/p) : x
Ratio r = 1/p;
Series y0 = SubSer(y, First(y), First(y)); // initial values
Series y_new = DifEq(r, x, y0);

Note that to solve the difference equation we have to include the appropriate valores iniciales

set. We can realise this intuitively once we realise how a differentiated series suffers a loss of

information; it contains less data than the undifferentiated set. It's necessary to include this

information when carrying out the inverse process, in a way similar to what happens in the

integration of the differential calculation.

The second member of a difference equation can also be a differentiated set.:

������ � ������

:

�� � �������� ��

Given a variable of type Ratio, we can obtain the numerator and denominator polynomials, via

the Numerator and Denominator functions respectively.

2.4.6 Modelling with time series

In time-series modelling, it's very common to find a correlation between the different values of

the series. This means that we can at least partly explain a particular series value by looking at

its previous values.

This is the basis of auto-regressive models (AR), in which the output is described as a linear

combination of delays whose:

�� ���� ����
�

� 	�

where �� is the observed time-series, �� are the auto-regressive parameters and 	� is the

unexplained part or model error.

ARIMA model

ARIMA (Auto-Regressive Integrated Moving Average) models are an extension of these auto-

regressive models. They incorporate differences and mobile averages which can be describe

with the following equation:

�1 ������
�

� �1 � ����� � �1 ������
�

�	�

2 The TOL language TOL Manual(ed.1) 51

Where the first polynomial of delays, �� , corresponds with the autoregressive part (AR), the

second polynomial is the order of differences and the third, with the parameters ��, the mobile

average part (MA).

ARIMA blocks(@ARIMAStruct)

To define ARIMA models, TOL includes the structure @ARIMAStruct, which has four fields. In

addition to the three polynomials already described, we can use these to indicate a value for the

regularity of the model. They can also be used to create seasonal ARIMA blocks (seasonal ARIMA

or SARIMA).

Generally speaking, we can describe an ARIMA model as a set of ARIMA blocks.

For example

// We create a sturcture corresponding with an ARIMA(2,0,0)-SARIMA.12(0,1,1)
Set arima = [[
 @ARIMAStruct(1, 1-0.5*B-0.5*B^2, 1, 1);
 @ARIMAStruct(12, 1, 1-0.5*B^12, 1-B^12)
]];

ARIMA etiquettes

To facilitate the specification of ARIMA blocks, TOL has an ARIMA model etiquette system with

the following form:

"P<period>DIF<order>AR<degrees>MA<degrees>"

in which the code between angle-brackets (<>) should be substituted for the corresponding

numerical values.

For the polynomial of differences, we only need to indicate the number of differences to be

applied, as the degree of difference is obtained from the period value. While for the polynomials

AR and MA the differente degrees must be explicitly indicated by separating them with full-stops

(.) .

In a case where the polynomial ARIMA consists of more than one block, the etiquette can be

composed by use of the underscore(_) to separate the different part fo each block.

For example, the etiqueete of the ARIMA model defined earlier is:

"P1_12DIF0_1AR1.2_0MA0_1"

as a combination of:

"P1DIF0AR1.2MA0" // an AR with two parameters (degrees 1 y 2)
"P12DIF1AR0MA1" // a difference with seasonality 12
 // and an MA with a paramteter (grade 1)

The standard TOL library, StdLib (see section 4.1) has two functions at its disposal to obtain

ARIMA blocks from the etiquette and vice versa: GetArimaFromLabel and

GetLabelFromArima.

ARIMA model estimation (Estimate)

As well as the ARIMA structure described, we can include explicit terms to model with time-

series, in such a way that the equation model would be:

2 The TOL language TOL Manual(ed.1) 52

�� ������,�
�

� "�

where the noise term, "�, is what the previously described ARIMA structure demonstrates.

TOL includes a maximum likelihood estimator, Estimate, which allows us to jointly estimate

the linear regression parameter(��) and the ARIMA part parameters. (�� y ��).

To specify the distinct characteristics of the model in the Estimate function, it's necessary to

create a set with the @ModelDef structure, indicating the series output, the ARIMA structure

polynomials and the series inputs, amongst other arguments. Specifically speaking, the model

inputs are indicated through use of polynomial series pairs with an @InputDef structure.

These allow us, therefore, to incorporate delay polynomials into the explantory terms.

Example:

// We create a time series with an MA(2) structure
// to which we add an external component (filter)
// to carry out a controlled estimation as in the example.
Series residuals = SubSer(Gaussian(0, 0.1, Monthly), y1999m11, y2010);
Real phi1 = 0.5;
Real phi2 = -0.3;
Polyn MA = 1 - phi1*B - phi2*B^2;
Series noise = MA:residuals;
Real beta = 1.2;
Series input = SubSer(Rand(1, 2, Monthly), y2000, y2010);
Series output = noise + beta * input;
// We estimate the model: output = beta*input + noise
// con: noise = MA(2):residuals
Set estimation = Estimate(@ModelDef(output, 1, 0, 1, 1, // Output
 Polyn 1, [[Polyn 1]], [[Polyn 1-0.1*B-0.1*B^2]], // ARIMA
 [[@InputDef(0.1, input)]], Empty) // Filtro
);
Real estimated_beta = estimation["ParameterInfo"][1]->Value;
Real estimated_phi1 = estimation["ParameterInfo"][2]->Value;
Real estimated_phi2 = estimation["ParameterInfo"][3]->Value;

2.5 Advanced notions

2.5.1 Modular programming (NameBlock)

A new type of variable in TOL which similar to sets, (Set) has a multiple nature, is the block or

name-block (NameBlock). The similarity to sets comes fromt he fact that it also formed of other

variables.

Although their nature and the way we define them are similar to sets, their purpose is rather

different. While sets (Set) basically exist to contain elements of various types, a block

(NameBlock) is there to offer a definition space or a local, permanent environment to create

variables and functions.

One of the main reasons nameblocks have been included in TOL is to favour a certain type of

organisation and modularity in programming. This allows for the definition of variables and

functions with a high degree of local visibility which can go on to form part of an array of

variables and global functions.

To define a block (NameBlock) we will make use of the following syntax:

NameBlock <name> = [[

2 The TOL language TOL Manual(ed.1) 53

 <Grammar1> <name1> = ...;
 <Grammar2> <name2> = ...;
 ...
]];

Example:

NameBlock block = [[
 Real value = 3.1;
 Text country = "Spain";
 Date date = Today
]];

Note that when constructing the nameblock, defined variables only have local visibility. This in
contrast with the process of creating sets. Compare the following codes:

Set set = [[
 Text text1 = "hola"
]];
WriteLn(text1);

hello

NameBlock block = [[
 Text text2 = "hello"
]];
WriteLn(text2);

ERROR: [] text2 isn't a vaild object for the type Text.

Member access

Block elements and members are characterised by name, this being a unique and essential

characteristic of each element. The (Code) functions defined within a block have access to the

rest of the block elements by name, as if they were global.

In general, when we want to access the members of a block we use the :: operator (two semi-

colons). This is done as if we were computing an identifier of said member, putting it ahead of
the block in which it is found:

<Grammar> <blockName>::<memberName>;

For example:

NameBlock supercomputer = [[
 Text name = "DeepThought";
 Real theAnswer = 42;
 Real GetTheAnswer(Real void) { theAnswer }
]];
Text supercomputer::name; // -> "DeepThought"
Real supercomputer::GetTheAnswer(?); // -> 42

Note that a function can be defined in the frame of a nameblock and in this way can be named in
the same sentence used to access it.

Encapsulation

Another of the characteristics included in nameblocks is that of encapsulation of variables and
functions. This gives visibility only to members that are useful when taken out of the context of
the local block.

For this, accessibility to block members can be restricted by selecting their name, which then
enables three different options.

2 The TOL language TOL Manual(ed.1) 54

• Public members, whose access from outside the block is permitted; both for enquiries
and editing. Public members' names always begin with a letter.

• Read-only members, whose access from outside the block is for enquiry purposes only.
Read-only members' names always begin with an underscore and a full-stop (_.).

• Private members, who are not permitted to have access from outside the block. Private

members' names begin with an underscore (_), followed by any other alpha-numeric

character except for the full-stop. (.)

Example:

As an example of the use of nameblocks as modular structures, we create a stopwatch-type
model, which measures the time elapsed between calls.

NameBlock Clock = [[
 Text _.description = "Clock to be used as a stopwatch";
 Real _initialTime = 0; // private member
 Real _elapsedTime = 0; // private member
 Real Start(Real void) {
 Real _elapsedTime := 0;
 Real _initialTime := Copy(Time);
 1};
 Real Stop(Real void) {
 If(_initialTime!=0, {
 Real _elapsedTime := Time - _initialTime;
 Real _initialTime := 0;
 1}, 0)
 };
 Real Reset(Real void) {
 Real _elapsedTime := 0;
 Real _initialTime := 0;
 1};
 Real GetElapsedTime(Real void) {
 Case(_elapsedTime!=0, {
 Copy(_elapsedTime)
 }, _initialTime!=0, {
 Time - _initialTime
 }, True, {
 WriteLn("The clock is not in progess.", "W");
 ?
 })
 }
]];
Real Clock::Start(?);
Real Sleep(1);
Real Clock::GetElapsedTime(?); // -> ~1
Real Sleep(1);
Real Clock::Stop(?);
Real Sleep(1);
Real Clock::GetElapsedTime(?); // -> ~2

2.5.2 Classes (Class)

The inclusion of the NameBlock grammar in TOL opens a wide range of possibilities with

regards to the creation of functional blocks. This results in program-development truly oriented
towards objects.

A lot is written about the best way to introduce the programming paradigm oriented toward
objects. Perhaps for a TOL user, someone who understands how to clarify structures (Struct)

in relation to sets (Set), the best way to begin would be to say that classes (Class) are to

blocks (NameBlock), what structures are to sets.

2 The TOL language TOL Manual(ed.1) 55

In a way similar to the one in which we introduced structures, (see section 2.2.4), we can
present classes as a specialisation of the NameBlock grammar. This permits us to represent

entities and create units of a particular concept. An objeto, is defined in this way, as each
instance in a class, and which we can describe as a nameblock estructurado.

In addition to the block members that host the characteristic information of each unit, classes
(conversely to structures) allow us to give a functional structure to all the objects (which is
common to all the instances in the same class). This allows us to interact with them. The first of
these are named atributos and the second métodos.

Terminology

To aid user-learning, here we outline some of the terms used for programming oriented towards
objects:

• Class: The structure, the design and the pattern with which objects are built.

• Object (variable-type NameBlock) created with a class.

• Member: Each one of the elements of an object or instance. This can also be called
component.

• Attribute: Any member of an instance's variable type (not function). It's value is
particular to each instance. This can also be called property.

• Method: Any member of function type of an instance. It is common to all instances.
However, it acts on, and only has (internal) access to, the object on which the call was
made.

Class definition

Class definition is performed using the following syntax:

Class @<ClassName> {
 // Attributes:
 <Grammar1> <attribute1>;
 <Grammar2> _.<attribute2>; // read-only attribute
 <Grammar3> _<attribute3>; // private attribute (for internal use)
 <Grammar4> <attribute4> = <defaultValue4>;
 ...
 // Methods:
 <GrammarM1> <Method1>(<arguments...>) {
 <code...>
 };
 <GrammarM2> _<Method2>(<arguments...>) {
 <code...>
 }; // private method (for internal use)
 ...
};

where the code appears between angle brackets (<>) it's necessary to substitute it for its

corresponding value.

Bear in mind that the members of a class's instance respond to the same visibility criteria as of
any other nameblock. This makes it possible to declare members public, private or read-only.

Example:

// To highlight the comparison with structures,
// We redifine the @Vector3D as a structure:
Class @Vector3D {
// Attributes:

2 The TOL language TOL Manual(ed.1) 56

 Real _.x;
 Real _.y;
 Real _.z;
// Methods:
 Real GetX(Real void){ _.x };
 Real GetY(Real void){ _.y };
 Real GetZ(Real void){ _.z };
 Real SetX(Real x) { Real _.x := x; 1 };
 Real SetY(Real y) { Real _.y := y; 1 };
 Real SetZ(Real z) { Real _.z := z; 1 };
 // spherical and cylindrical additional coordinates:
 Real GetR(Real void) { Sqrt(_.x^2 + _.y^2 + _.z^2) }; // length, radius
 Real GetRho(Real void) { Sqrt(_.x^2 + _.y^2) }; // radial distance
 Real GetPhi(Real void) { _ATan2(_.y, _.x) }; // azimuth angle
 Real GetTheta(Real void) { ACos(_.z/GetR(?)) }; // polar angle
 // auxiliar (private) methods:
 Real _ATan2(Real y, Real x) { ATan(y/x) + If(x<0,Sign(y)*Pi,0) }
};

Note that just as with structure names, class names have to begin with the @ (at) symbol.

Instancing

To create class objects or instances we use the following syntax:

@<ClassName> object = [[
 // Value list for attributes
 <Grammar1> <attribute1> = <value1>;
 <Grammar2> _.<attribute2> = <value2>;
 ...
]];

Access to attributes from outside the class is made, as with those of any other blocks
(NameBlock), through use of the :: operator (two semi-colons):

<Grammar1> value1 = object::<attribute1>;

For example

To create an instance of the class @Vector3D, we write:

@Vector3D vector3D = [[
 Real _.x = 1;
 Real _.y = 2;
 Real _.z = 3
]];

Note that the main difference that we find with a similar declared block

NameBlock block3D = [[
 Real _.x = 1;
 Real _.y = 2;
 Real _.z = 3
]];

It's the existence of the methods that vector3D has available to it as a result of being of

the@Vector3D class, that allow us to obtain additional information:

Real vector3D_length = vector3D::GetR(?); // -> 3.741657
Real vector3D_azimuth = vector3D::GetPhi(?)*180/Pi; // -> 63.435°
Real vector3D_inclination = vector3D::GetTheta(?)*180/Pi; // -> 36.70°

This said, the class not only take care of building the attributes (and initialize the optional
attributes with the default values) but also wrapping the object created with behaviour defined
in the class, i.e. the methods

2 The TOL language TOL Manual(ed.1) 57

Static members (Static)

On occasions, we may wish to include certain information or functionality in a class, thus
facilitating access to it with having to create an instance.

TOL allows for member classes to be incorporated as if it were a special type of nameblock,

simply by putting the the keyword Static before the definition:

Class <@ClassName> {
 ...
 // Static attributes:
 Static <GrammarC1> <classAttribute1> = <valueC1>;
 ...
 // Static methods:
 Static <GrammarCM1> <ClassMethod>(<arguments...>) {
 <code...>
 };
 ...
};

Access to the class members known as miembros estáticos can be obtained via the :: operator

(two semi-colons):

Anything @<ClassName>::<classMember>;

Advance declaration

A class name must be declared in order for us to be able to use it. This is true even if it isn't to be
used until a later point in time. If this isn't done TOL will return a syntactical error. To help us
avoid encountering such issues, TOL allows for the advanced declaration of a class using just its
name.

Class @<ClassName>;

One scenario that clearly demonstrates this is one in which we define two inter-related classes,
in such a way that each one makes use of the other in its definition:

// We pre-declare @B to be able to use it in the definition of @A
Class @B;

// We pre-declare @A using @B (which is already pre-declared)
Class @A {
 ... @B ...
};

// We declare @B using @A (which is already declared)
Class @B {
 ... @A ...
};

2.5.3 Class design

Now let's look at some additional characteristic relating to the creation and use of classes:

Attribute management

Attribute values can be easily modifed, just as any other variable can via:

<Grammar1> object::<attribute1> := <newValue1>;

However, this isn't very convenient when it comes to the design of many classes, as editing an
attribute could lead to adverse knock-on effects in other internal modifications. To avoid this,

2 The TOL language TOL Manual(ed.1) 58

attributes are declared as read-only (preceded by _.) and accompanied by a method for their

editing.

A recommended practice in such cases is to create a pair of methods Get<Attribute> and

Set<Attribute> for each attribute (_.attribute:

<Grammar1> value1 = object::Get<Attribute1>(?);
Real object::Set<Attribute1>(<newValue1>);

Alternative constructors

It is often useful to have functions available to us that allow us to build instance from just a
handful of arguments. These alternative "constructors" aren't strictly constructors in the the
truest sense of the word. Rather, they are functions that directly or indirectly make a call to the
constructor whose default syntax is:

@<ClassName> object = [[...]];

These constructor functions are related to class, as it's common (although not essential) to place
them there as class statics, in a way that an instance can be created with the syntax:

@<ClassName> object = @<ClassName>::<Constructor1>(<arguments...>);

The constructor function is no more than a static method that returns an instance. It is defined in
the same way as any other method but the declaration is preceded with the word Static:

Class @<ClassName> {
 ...
 // Constructors:
 Static @<ClassName> <Constructor1>(<arguments...>) {
 <definition...>
 };
 ...
};

Inheritance (:)

One of the most important characteristics of object-oriented programming is inheritence. This
mechanism allows us to derive a general class from a more specific one. This is done in a way in
which the the definition of the first is preserved, making it possible to define a new class where
only the new members we wish to include are defined.

To create a new class which inherits from another/others, the class-definition syntax is

broadened by using the semi-colon operator, (:) followed by the name(s) of the classes from

which we wish to inherit.

Class @<ClassName> : @<ClassName1>[, @<ClassName2>, ...] {
 // Members:
 ...
};

where the square brackets ([]) indicate optionality.

Redefinition of methods

In the event that the same method from two different classes is inherited, the definition of the
latter will always take precedence over the former. Furthermore, methods included in the new
class's definition will take precedence over any inherited member.

2 The TOL language TOL Manual(ed.1) 59

Bear in mind, however, that the declaration of methods can't be changed; these being the output
grammar and the input argument names.

Abstract classes

One possibility associated with the concepts of inheritence and method redefinition is that to
create partially-defined classes.. These are what we refer to when talking about virtual methods,
or methods that are declared (without being indicated in the body of the function) in the class
definition, leaving their definition for derived classes.

Virtual or abstract classes are, therefore, classes which have at least one virtual method. Not
being completely defined, it's not possible to directly create instances from them, rather this
must be done from a derived class.

Example:

// We create an abstract class to represent flat figures.
Class @Shape {
 // We declare two virtual methods which must be derived in derived classes.
 Real GetPerimeter(Real void);
 Real GetArea(Real void);
 // We define other methods that will inherit derived classes.
 Real PrintPerimeter(Real void){ WriteLn("Perimeter: "<<GetPerimeter(?)); 1};
 Real PrintArea(Real void) { WriteLn("Area: "<<GetArea(?)); 1}
};
// We derive two @Shape classes to represent cricles and squares:
Class @Circle : @Shape {
 Real _.radius;
 Real GetPerimeter(Real void) { 2 * Pi * _.radius };
 Real GetArea(Real void) { Pi * _.radius**2 }
};
Class @Square : @Shape {
 Real _.side;
 Real GetPerimeter(Real void) { 4 * _.side };
 Real GetArea(Real void) { _.side**2 }
};
// We create three figure instancing @Circle and @Square
Set shapes = [[
 @Circle c1 = [[Real _.radius = 1]];
 @Circle c2 = [[Real _.radius = 1.5]];
 @Square s1 = [[Real _.side = 2.25]]
]];
// We call the common method WriteArea to print its areas
Set EvalSet(shapes, Real (@Shape shape) { shape::PrintArea(?) });

Area: 3.141592653589793
Area: 7.068583470577035
Area: 5.0625

Internal reference (_this)

When designing a class, it is occasionally necessay that an object has a reference to itself at its

disposal. All classes have this reference available through a private attribute called _this.

Destroy method (__destroy)

It is possible to include a destroy method, called upon when an instance is decompiled. However
its use isn't particularly common in TOL programming, as memory management isn't run under
the control of the user.

2 The TOL language TOL Manual(ed.1) 60

This method can take charge of tasks such as closing files or open database connections, during
the creation or use of an instance.

The declaration reserved for this method is:

Real __destroy (Real void)

2.5.4 Other language elements

Directives (#<Directive>)

This section introduces directives in TOL as a special language element.

#Embed: See section 3.1.1.

#Require: See section 3.4.2.

2.5.5 Memory use

This section brings together some pointers in order to aid better understanding of the use
<t0/>TOL<t1/> makes of memory, and how to improve the efficiency of the algorithms it
requires.

Objects in memory (NObject)

Access structures by reference (@<Grammar>)

3 Use of TOL TOL Manual(ed.1) 61

3 Use of TOL

3.1 System files

3.1.1 Source files .tol

This section includes information relative to the design and creation of TOL programs in .tol

files. It also mentions other types of files for the construction of code projects such as .prj files.

#Embed Directive

3.1.2 File-reading/writing

This section includes information relating to file-reading/writing.

We highlight the: FOpen, ReadFile, ReadTable, MatReadFile and VMatReadFile

functions, and the file-types: .bst, .bdt, .bbm, .bvm, etc.

3.1.3 Serialisation in TOL. OIS

This section includes informtation relating to serialisation in TOL: OIS reading/writing of .oza

files.

3.1.4 Integration with the operating system.

This section includes information relating to the integration of TOL with the file system via the
operating system.

We highlight the functions: GetDir, MkDir, GetFileName, GetFileExtension,

GetFilePath, FileExist and FileDelete, and the function-set OsDir* y OsFil*.

3.2 Communication

3.2.1 Communication with the operating system

This section includes information relating to the integration of TOL with the operating system

to enable programs to run via the command line interface, using functions such as: System or

WinSystem.

3.2.2 Obtaining urls

 TOL has a number of functions for downloading remote files through http or ftp protocols. All of

these functions download the content referenced by url given as an argument. The value

returned is the downloaded content.

The functions available for this purpose are:

• Text GetUrlContents.tcl.uri(Text url) installs the download based in the

uri package of Tcl.

• Text GetUrlContents.tcl.curl(Text url_) installs the download based in

the cURL library.

3 Use of TOL TOL Manual(ed.1) 62

• Text GetUrlContents.sys.wget(Text url) installs the download

based in the wget command line interface tool.

• Text GetUrlContents.tcom.iexplore(Text url) installs the download

based in Internet Explorer's API COM.

A variant of these functions is available which redirects one of them in a pre-configured way.:

• Text GetUrlContents(Text url) is a general download function that uses the

above functions as a function of the global configuration

functionTolConfigManager::Config::ExternalTools::UrlDownloader

(seesection 3.3.1), which can take one of the following values:
o "tcl:uri" to run GetUrlContents.tcl.uri.

o "tcl:curl" to run GetUrlContents.tcl.curl

o "sys:wget" to run GetUrlContents.sys.wget y

o "tcom:iexplore" to run GetUrlContents.tcom.iexplore.

Obtain the url via cURL

TheGetUrlContents.tcl.curlfunction is supported by the GetUrl function, which is

installed in the CurlApi module (seesection 4.1.2). This function is based in the cURL tool

(http://curl.haxx.se) and allows us to control download parameters. The function has the
following prototype:

Set CurApi::GetUrl(NameBlock args)

Where NameBlock args could contain the following members:

• Text url: contiene el url que referencia al contenido que se solicita descargar.

• Text file: contains the path where the content will be downloaded from. This is an

optional argument. If no argument is defined, the content is returned as a result of the
function.

• Real timeout:establishes the maximum time in download seconds. Note that the

resolution time for names, and the establishment of a connection normally takes a
considerable time. If an argument of less than a few minutes is established, we run the
risk of aborting completely normal operations. It is an optional parameter and its value

by omission 0.0 implies no time-check.

• Real connectiontimeout: establishes a maximum time in seconds dedicated to the

establishment of a connection with the server. It only takes into account the connection
phase and once the connection is established this option is no longer used. It is an

optional parameter and its value by omission 0.0 implies no time-check..

• Real verbose: is an indicator for when the true value takes (!=0), it causes the

release of messages through the standard output of the operations involved in the
download. It's very useful for both understanding and filtering the download protocol.

The function returns a set that contains information about the implemented transfer. If the
transfer was a success, the set will contain the following fields:

• Real connectTime: the time taken in seconds from the beginning to completion of

the connection to the remote host.

3 Use of TOL TOL Manual(ed.1) 63

• Real fileTime: the remote date of the downloaded document, counted as the

number of seconds since 1st of January 1970, in the GMT/UTC time-zone. The value of
this field can be -1 for various reasons; such as unknown time, or the server not
supporting the command that tells you the date of a document etc.

• Real totalTime: The total time of the transaction, in seconds, for the transfer,

including name resolution, TCP connection, etc.

• Real sizeDownload: the total quantity of bytes downloaded.

• Real speedDownload: the average download speed,measured in bytes/s for the

entire download.

• Text nameData: the field-name within the same set that contains the downloaded

data. It can take the two "file" values in cases where it was requested that the

download was written in a file or "bodyData", if the destination file wasn't specified in

the call.

• Text file: the file where the downloaded content should be stored.

• Text bodyData: the downloaded content if no file has been specified as destination.

If the download was unsuccessful, the resulting set will contain the following fields:

• Real failStatus: and error code.

• Text explain: a chain with the error description.

We'll now move on to take a look at a few examples of the use of the CurApi::GetUrl

function:

Example 1: Download http content, storing it in a variable.

Set result1 = CurlApi::GetUrl([[
 Text url = "http://packages.tol-project.org/OfficialTolArchiveNetwork/"
 "repository.php?tol_package_version=1.1"
 "&tol_version=v2.0.1%20b.4&action=ping&key=658184943";
 Real verbose = 1;
 Real connecttimeout = 3
]]);
If(result1::failStatus, {
 WriteLn("CurlApi::GetUrl error: "<<result1::explain)
}, {
 WriteLn("CurlApi::GetUrl ok, the result is: "<<result1::bodyData)
});

Example 2: Download http content to a file.

Set result2 = CurlApi::GetUrl([[
 Text url = "http://packages.tol-project.org/OfficialTolArchiveNetwork/"
 "repository.php?action=download&format=attachment&package=BysMcmc.4.4";
 Text file = "/tmp/BysMcmc.4.4.zip",
 Real verbose = 1;
 Real connecttimeout = 3
]]);
If(result2::failStatus, {
 WriteLn("CurlApi::GetUrl error: "<<result2::explain)
}, {
 WriteLn("CurlApi::GetUrl ok, the result was downloaded to: "
 <<result2::file)
});

Example 3: Download ftp content to a file.

Set result3 = CurlApi::GetUrl([[

3 Use of TOL TOL Manual(ed.1) 64

 Text url = "ftp://ftp.rediris.es//pub/OpenBSD/README";
 Text file = "/tmp/README";
 Real verbose = 1;
 Real connecttimeout = 30
]]);

3.2.3 Access to a database (DB<Function>)

In sections 2.3.3 and 2.4.3, we saw how we can generate time-series or matrices using elemental
functions, manually-inserted data or random numbers. Now, we describe some of the functions
that TOL use to access databases. These allow us to obtain information and build variables.

TOL includes some basic functions for communication with databases via ODBC:

• The DBOpen function opens a connection with a database.

• The DBClose closes a connection with a database.

• The DBTable function returns a result in the form of an SQL query SELECT set (Set)

• TheDBSeries, DBSeriesColumn and DBSeriesTable functions help us to create

time-series SQL queries SELECT.

• The DBMatrix allows the creation of matrices from SQL queries SELECT.

• The DBExecQuery generally allows us to run every type ofSQL sentence to interact with

the database.

Example. Reading files

We now outline an example for using database functions with an ODBC to a folder with flat-data
files:

Creation data on file

We create a folder which will create the instances of the database. In the example we will use:
"C:/Data".

There, all files of type.txt will be placed with the data. To do this we create two files with the

following data. We can use the note-pad to create it.

data.txt

date,value1,value2
2000/01/01,210,162
2001/01/01,181,142
2002/01/01,192,158
2003/01/01,191,182
2004/01/01,172,144
2005/01/01,207,132
2006/01/01,205,159
2007/01/01,199,162
2008/01/01,205,158
2009/01/01,219,122
2010/01/01,186,125

multiple.txt

name,date,value1,value2
"A100",2000/01/01,102,312
"A100",2001/01/01,111,282
"A100",2002/01/01,128,315
"A100",2003/01/01,107,308
"A100",2004/01/01,131,322
"A100",2005/01/01,142,295

3 Use of TOL TOL Manual(ed.1) 65

"A101",2000/01/01,52,112
"A101",2001/01/01,61,82
"A101",2002/01/01,28,85
"A101",2003/01/01,67,108
"A101",2004/01/01,81,122
"A101",2005/01/01,42,95

Note that this data only has an educational purpose.

ODBC

Moving on, we now create an ODBC connection using the Microsoft text-file driver. We give it the
name "TOLTest" (for example).

This can be done manually using Windows's administrative tools running the following code on
the command console:

odbcconf configsysdsn "Microsoft Text Driver (*.txt; *.csv)"
 "DSN=TOLTest|defaultdir=C:\Data"

Obtaining data

Real GlobalizeSeries := 0;
Real DBOpen("TolTest", "", "");
Set DBTable("SELECT * FROM data.txt");
Set DBSeries("SELECT date, value1 FROM data.txt", Yearly, [["A000"]]);
Set DBSeriesColumn("SELECT name, date, value1 FROM multiple.txt", Yearly);
Set DBSeriesTable("SELECT name, date, value1, value2 FROM multiple.txt",
 Yearly, [["_A", "_B"]]);
Real DBClose("TolTest");

3.3 TOL configuration

3.3.1 Configuration model(TolConfigManager)

TOL's configuration is managed from the TolConfigManager module. This nameblock hosts

all of the configuration values, as well as the methods for their use and editing.

The TolConfigManager allows the user to modify their TOL working preferences, using the

same language and storing it on disk in a simple and straightforward way.

The configuration is kept as a TOL session in a configuration file in the application's data folder.

Text TolConfigManager::_.path
// => Text TolAppDataPath+".tolConfig."+Tokenizer(Version," ")[1]+".tol";

and each time TOL starts up and the block is built we see: TolConfigManager::Config.

The configuration block can be edited within the running session as any other type of

NameBlock variable, although it's possible that the consequences of applying this configuration

won't have any effect until a new session is opened. To save the configuration changes so that

they take effect in the next session, we need do no more than call the method

TolConfigManager Save.

Example:

For example, if we have a machine without an internet connection is recommended that the local
TOL configuration is changed, to avoid the system wasting time trying to make a connection.
This can be done manually using the following code:

3 Use of TOL TOL Manual(ed.1) 66

Real TolConfigManager::Config::Upgrading::TolVersion::CheckAllowed := False;
Real TolConfigManager::Config::Upgrading::TolPackage::LocalOnly := True;
Real TolConfigManager::Save(?);

If at a later point in time it does have a connection the previous configuration can be undone via:

Real TolConfigManager::Config::Upgrading::TolVersion::CheckAllowed := True;
Real TolConfigManager::Config::Upgrading::TolPackage::LocalOnly := False;
Real TolConfigManager::Save(?);

3.3.2 Other configuration mechanisms

Older TOL configurations belong in global variables or internal variables that can be edited by
other means.

The configuartion related to theTOLBase is stored in the tolcon.ini file, in the user'shome

directory.

3.4 Package system

From TOL version 2 onwards, a mechanism has been implemented to build and automatically
distribute reusable software components. In this section we will explain what a TOL package is
and how to use it. We'll also looks at related information about the management of installed
packages and package repositories.

3.4.1 Packages

In section 2.5.1 we presented blocks or nameblocks (NameBlock) as the grammar that makes it

possible for TOL to be oriented towards modularity. This allows for the creation of definition
spaces, capable of storing sets of variables or related co-prime functions.

The idea of a package comes from the concept of modularity, and the possibility of loading and
distributing a whole module as a unit. A package is essentially no more than a nameblock
distributed in an .oza file. See section 3.1.3 for further details about this type of storage.

Packaging

In the TOL programming frame, we identify the package with the (NameBlock) that contains

the set of class and structure variables, functions and definitions. This is distributed and loads as
a unit of the TOL package system.

Looking more from a distribution-focused point of view, a package is a compressed file
(specifically a .zip file) that contains the nameblock serialisation (an .oza file). This is

accompanied by other complementary resources that can be: files containing icons or images,
documentation, libraries of compiled functions (written in C++ and distributed in .dll or .so files)

and even uncompiled TOL code (.tol files) by way of example.

Name and version

A TOL package is identifed by its name and version.

The name of the package matches with the name of the nameblock that represents it. It generally
follows a CamelCase structure.

The version consists of integers. The first (the versión alta number) shows if there has been an
important change in the structure and functionality; one which could break the compatability

3 Use of TOL TOL Manual(ed.1) 67

with the user-code in use. The second however (the versión baja number) shows that changes
have been made to the package that maintain package-use compatability. These changes could
be corrections or the inclusion of new functionalities.

Identifier

The package identifier is created by linking the name and two version numbers

<name>.<version.high>.<version.low> with a full-stop (.).

For example, the identifier GuiTools.3.5 makes reference to version 3.5 of GuiTools, which

includes utilities for TOLBase graphical integration.

3.4.2 Installation and use of packages (#Require)

The simplest way to install and load a package (providing it isn't already installed) is to use the

TOL directive #Require, accompanied by the desired name or package identifier.

For example

#Require GuiTools;

The use of directives in TOL is relatively uncommon and their behaviour is slightly different
from other sentences. They differ in that they take effect before both compilation and the
interpretation of the rest of the lines of code.

For example:

WriteLn("Line 1");
#Require GuiTools;
WriteLn("Line 2");

The package GuiTools.3.5 has been loaded
Line 1
Line 2

Specifically, the directive #Require takes care of loading a package (if it isn't already loaded)

before compiling the rest of the code. This avoids possible syntactical errors due to the use of
declared structures and classes in the package.

Bear in mind that the call to #Require tries to load the package by use of all available means,

even trying to locate it in a package repository and install it.

Loading versions

The #Require directive allows us to specify the package-version that we wish to load. This

make it possible to indicate the two version numbers, just the first one or only the package-
name, as preferred.

• If we only indicate the package name, the most recently installed version will be loaded.
Specifically, the package whose versión bajais the largest from those amongst the versión

alta will be loaded.

#Require <PackageName>;

• If we indicate the first version number, the latest version of the package whose versión

alta number matches the one indicated will be loaded.

#Require <PackageName>.<VersionHigh>;

3 Use of TOL TOL Manual(ed.1) 68

• If we indicate the complete package identifier (name and two version numbers), only the
said version of the package will be loaded.

#Require <PackageName>.<VersionHigh>.<VersionLow>;

Note that the directive will not try to load the package if it is already loaded, even when the
indicated version doesn't match that of the loaded package, as it isn't possible to load two
different versions of the same package.

Compatibility with the TOL version

On occasions, packages are built which are supported by modifications or updates in the
language which mean that don't work in previous versions of TOL. For this reason, some
packages have a minimal version, from which compatibility is guaranteed.

For example, version 3.5 GuiTools requires at least version 3.1 de TOL.

Bear in mind that if a version of a package ins't compatible with the version of TOL we're using,
it will remain invisible for all of the package installation, loading and update mechanisms,
making it as if it didn't exist.

Package self-documentation

Amongst its member, a package (the NameBlock) includes attributes whose function is self-

documentation of the said package. From these we can highlight:

• Text _.autodoc.name: the package name.

• Real _.autodoc.version.high: the first version number or high version.

• Real _.autodoc.version.low: the second version number or low version.

• Text _.autodoc.brief: a brief description of the package.

• Text _.autodoc.description: a more detailed description of the package.

• Set _.autodoc.keys: a set of keywords.

• Set _.autodoc.authors: a set of the package's author's.

• Set _.autodoc.dependencies: a set of the package's dependencies.

• Text _.autodoc.minTolVersion: the minimal compatible TOL version.

3.4.3 Package management (TolPackage)

The module for TOL package management is TolPackage It handles a nameblock which is

structured in such a way that it's sub-models handle different functionalities. The include;
installed package management, package repository interaction, package construction, amongst
others.

The TolPackage module has different version numbers available (as if we were dealing with a

package) which aid the management of changes and upgrades.

Moving on, we now look at some basic notions relating to the use of TolPackage, valid from

version 2 (2.X) onwards, which has been distributed with TOL from version 3.1 onwards (more
specifically v3.1 p011).

3 Use of TOL TOL Manual(ed.1) 69

Package installation

A package is automatically installed the first time it is required (#Require). However,

installation can be carried out manually via the InstallPackage function, indicating the

identifier (name and version) of the package desired for installation:

Real TolPackage:InstallPackage(<packageIdentifier>);

If we don't know the most recent version we can use the InstallLastCompatible function

and simply indicate the package name:

Real TolPackage:InstallLastCompatible(<packageName>);

Update and upgrade (update & upgrade)

From time-to-time, new versions of a package are created. We need these to allow us to stay up-
to-date.

The packages system identifies two placement mechanisms:

• A package update (update), which consists of the subsitution of the package for another
more recent one, which has the same version numbers

• A package upgrade (upgrade) consists of the installation of a new version of the package.
Note that the previous version isn't uninstalled.

A package update usually includes important corrections, as the reconstruction of of a new
package with the same version discards the previous one.

To update a package we can use the Update function, indicating the package name:

Real TolPackage::Update(<packageName>);

We can also update all the packages we have installed using the UpdateAll function:

Real TolPackage::UpdateAll(?);

A package upgrade is equally recommendable, as in many cases they include important advances
in the implemented procedures and algorithms.

To improve a unique package we can use the Upgrade function:

Real TolPackage::Upgrade(<packageName>);

And in a similar way, the UpgradeAll function, to improve all of the installed packages:

Real TolPackage::UpgradeAll(?);

Low version upgrade (low-upgrade)

On the odd occasion, we may wish to upgrade the low version versión baja (second version
number) of a package maintaining the high-version as it is. For this we have the LowUpgrade

function, which we can call using the package name and the first version number (versión alta):

Real TolPackage::LowUpgrade(<packageName.packageVersion>);

Bear in mind that if we only indicated the package name, an attempt would be made to upgrade
the low version of all of the different high versions of the package found installed.

 If we wish to include all of the upgrades in a package, we have the function FullUpgrade

which joins calls to Upgrade and LowUpgrade:

3 Use of TOL TOL Manual(ed.1) 70

Real TolPackage::FullUpgrade(<packageName>);

We also have version for all installed packages available: LowUpgradeAll and

FullUpgradeAll.

3.4.4 Package repositories

Up until this point we have only made general reference to package repositories without
explaining them in any real detail. The package repositories are basically the areas where
packages are both stored and distributed for installation and usage.

The internal architecture of repositories isn't of particular interest in terms of use, except in that
it contains an indispensable PHP interface that facilitates communication and the obtaining of
packages.

For example, the corresponding URL for the offical TOL packages repository is:
http://packages.tol-project.org/OfficialTolArchiveNetwork/repository.php (ruta php).

Known repositories

The TolPackage module makes communication with repositories easier, by managing the

installation, updates and upgrades of packages.

The list of known repositories that consult TolPackage can be found in the configuration

variable:

Set TolConfigManager::Config::Upgrading::TolPackage::Repositories;

By default, this variable ony contains the URL of the offical repository of packages in TOL,

although this can be edited in the normal way through the TolConfigManager (see section

3.3.1) or using the AddRepository function of TolPackage:

Real TolPackage::AddRepository(<newRepositoryURL>);

Repository website

Repositories usually have a website which allows users to see the complete list of available
packages, inspect all of their characteristics or even download them.

The offical repository of TOL packages websites is known as OTAN (Official Tol Archive Network)
and can be found in the following trac wiki page:
https://www.tol-project.org/wiki/OfficialTolArchiveNetwork (wiki path).

3.4.5 Package-management graphic interface

From version 3 onwards, TOLBase includes a graphic interface especially designed to make the
management of packages easier. It can be accessed from the Tools menu, in the Package

management option.

3 Use of TOL TOL Manual(ed.1) 71

 Figure 3.4.1: TOLBase package-management interface.

The interface offers a list of all available packages from all of the of the repositories to which
they have access for installation, updates or upgrades.

Different package states are displayed in the form of various different icons:

• : New, not installed.

• : Update required; a more recent package of an identical version is available.

• : Upgrade required, a package with a superior version is available.

• : Upgrade and update required, both of these are required periodically.

• : Package okay, currently installed without requirement for update or upgrade .

Various actions can be carried out on packages. These are offered in the contextual menu.

3.4.6 Package source-code

TOL package source-code is managed via a version-control system called SVN (see:
http://subversion.apache.org) linked to the project trac.

Public code servers

TOL development has two public development tracs:

• The main TOL-Project trac: https://www.tol-project.org.

• El MMS (Model Management System) trac: https://mms.tol-project.org.

Both of these tracs have their corresponding code-server SVN, although they share package
repositories. See 3.4.4.

For further information about MMS please refer to the appropriate manual.

3 Use of TOL TOL Manual(ed.1) 72

Download code (svn path)

Package code can be found organised in folders with each package name in the path:
https://www.tol-project.org/svn/tolp/OfficialTolArchiveNetwork (ruta svn).

We need to use an SVN program client to download the code.

For example, to download all of the OTAN packages to a local directory from the command-line
interface, we would write:

svn co https://www.tol-project.org/svn/tolp/OfficialTolArchiveNetwork/
 c:/users/<user>/svn/OTAN

In place of using instructions in the command-line interface, we can use a graphic interface
application such as TortoiseSVN (http://tortoisesvn.net).

Consult code (browser path)

If we simply wish to consult a particular detail, or we are interested in seeing various
functionality changes to do with tickets,milestones (milestones) or trac components, we can
consult the code from the web explorer available in trac:
https://www.tol-project.org/browser/tolp/OfficialTolArchiveNetwork (browser path).

4 TOL packages TOL Manual(ed.1) 73

4 TOL packages

In section 3.4 we saw all the information relevant to the TOL package system, including its
creation and use. In this chapter, we describe functions implemented in some of the packages
related to TOL development and it's main trac TOL-Project.

We won't describe all of the packages available in OTAN, rather just those which can be
considered to be the most useful. In the final section of the chapter we make reference to a
larger set of packages, indicating both its purpose and references to places of interest relating to
each package.

 Remember that the complete list of packages available in the TOL public package repository is
called OTAN (Official Tol Archive Network), and can be found at: https://www.tol-
project.org/wiki/OfficialTolArchiveNetwork. See section 3.4.4.

The code for these packages can be downloaded from the TOL-Project SVN:
https://www.tol-project.org/svn/tolp/OfficialTolArchiveNetwork (svn path)
or can be consulted from the trac website at:
https://www.tol-project.org/browser/tolp/OfficialTolArchiveNetwork (browser path).
For further details, see section 3.4.6.

All packages can be found in the code-server . For example, the package GuiTools can be found

at:
https://www.tol-project.org/svn/tolp/OfficialTolArchiveNetwork/GuiTools (svnpath) or at:
https://www.tol-project.org/browser/tolp/OfficialTolArchiveNetwork/GuiTools (browser
path).
We then simply indicate: OTAN/GuiTools.

4.1 StdLib

In the early days of TOL, the basic encapsualtion unit was the file. Specific functions were drawn
from a set of files which all related to specific functionailty.

 TOL is distributed with a special pre-installed directory. This contains a set of files relating to
the most common/standardised functions, in order to maker user-access more straightforward.
This set of function is called StdLib, an abbreviation of the term Standard Library.

StdLib package

This file-based structure is very inflexible. Therefore, with the advent of package-based
modularization the StdLib is now distributed as a package.

Currently, StdLib is a large module that contains a set of functions for a host of different uses.

In order to gain more modularity in the future, we are working to divide it into ever smaller and
more atomic packages, dedicated to more specfic functionalities.

Bloque TolCore

Some functions, data structures and constants can't be extracted from the TOL distribution. This
is either because they are so closely linked to a number of TOL's internal functions, or as they
were essential for the StdLib itself. This is the also the case with the TolPackage internal

4 TOL packages TOL Manual(ed.1) 74

module. This set of functions have remained grouped together in an internal nameblock called
TolCore.

All of the member functions of these nameblocks, both those of the StdLib and those of the

TolCore are automatically exported to the global domain to aid compatibility with older code.

4.1.2 Bloque TolCore

The code corresponding to the TolCore block continues to be located in a directory called

stdlib, together with the language code. Consult the code/server path:

https://www.tol-project.org/svn/tolp/trunk/tol/stdlib (svn path) or
https://www.tol-project.org/browser/tolp/trunk/tol/stdlib (browser router),
in front, simply stdlib.

Amongst the functionalities belonging to TolCore we find:

• Package/management functions: implemented in the TolPackage module. See

section 3.4.3. The source-code can be found at: stdlib/TolPackage.

• Internal structures: structures (Struct) referenced in the internal function

Estimate used in the estimation of ARIMA models. See section2.4.6. The source/code

can be found at: stdlib/arima.

• TOL configuration functions: implemented in the TolConfigManager module. See

section 3.3.1. The source-code can be found at: stdlib/TolConfigManager.

• Functions for downloading remote files:CurlApi. See section 3.2.2. The source/code

can be found at: stdlib/system/CurlApi.

• Functions for reading/writing files and compressed directories: implemented in

the PackArchive module. The source-code can be found at:

stdlib/system/PackArchive.

4.1.3 StdLib package

However, as has already been mentioned, the StdLib package contains functions with very

diverse uses. As such, it is currently being revised in the hope of creating greater modularity. In
future versions its content will be split up into different packages.

Let's now take a look at some of the currently available functions:

• Access to databases: Implemented in the DBConnect module. Unified

mechanisms are offered to establish connections to different databases. The source-code
can be found at: OTAN/StdLib/data/db.

• Interpolation functions based in the API of GSL and AlgLib. The source-code can be
explored at: OTAN/StdLib/math/interpolate.

• lineales precondicionados solvers: these contain routines for solving symmetric linear
systems and badly-conditioned symmetrics. We can revise the source-code at
OTAN/StdLib/math/linalg. Also explore these objects:

o Code StdLib::SolvePrecondSym

o Code StdLib::SolvePrecondUnsym

4 TOL packages TOL Manual(ed.1) 75

• Funciones de optimización : using Marquardt, linear programming (based in theRglpk
package of R, StdLib::Rglpk) and quadratic programming (based in Rquadprog in R,

StdLib::Rquadprog). We can find the source-code at: OTAN/StdLib/math/optim.

• Functions for running R from TOL: these implement functions that aid the running of
written functions in R. We can look at two examples of use in the implementation of the

StdLib::Rglp::solveLP and StdLib::Rquadprog::solveQP functions. The

source-code can be explored at OTAN/StdLib/math/Rapi.

• Function for estimating univariate density: based in the density function of R.

Explore the StdLib::Rkde module. The source-code can be found at:

OTAN/StdLib/math/stat/kde.

4.2 GuiTools

GuiTools is a package that allows the use and extension of the graphic interface's funcionalities

(GUI: Graphical User Interface) using TOL language.

Although conceived independently of the graphic platform, the current implementation only
works completely for the TOLBase graphic interface, which is implemented in Tcl-Tk.

Amongst the most frequently-used functionalities of this package are the module dedicated to:

• Personalisation and management of images: GuiTools::ImageManager y

• Personalisation and management of contextual menus: GuiTools::MenuManager.

4.2.1 Image management (ImageManager)

Image registry

The image manager carries out two functions inside the ImageManager module. These allow

images to be registered from a file or a text with an encoded image using base64:

• Real defineImageFromFile(Text imageName, Text imagePath) registers

an image contained in a file. The image can be referenced later on by the identifer given

in imageName.

• Real defineImageFromData(Text imageName, Text imageData) registers

an image from a text that contains the coding of the image-date in base64. The image can

be referenced later on by the identifer given in imageName.

Example:

To obtain an image coded in base64, TOL has a function that allows us to obtain said coding from

a file: EncodeBase64FromFile. For example

Text image_base64 = EncodeBase64FromFile(".../image.gif");

The content of the resulting variable has to be passed on as an argument to the

defineImageFromData function, to register the image for example:

Real GuiTools::ImageManager::defineImageFromData("my_image", image_base64);

Assigning icons to classes

objetos which are class instances are displayed in the object inspector with the same icon that is
common to all objects of the type NameBlock. This does sometimes make it difficult to

4 TOL packages TOL Manual(ed.1) 76

differentiate between objects of different classes. ImageManager this contains a function

making it possible to associate an icon with instances of a class.

• Real setIconForClass(Text className, Anything imageName) defines

the image that will be shown in the object inspector for instances of a class with name
className. The imageName argument can be of either Text or Code type. When it is

of Text type, it is interpreted as the name of a registered image. When it is of Code

type, it is interpreted as a function object that returns the name of the registered image.
In the case of the latter, the function receives the selected instance as an argument and
can decide the appropriate function with respect to the object state.

Example:

Let's now use an example to illustrate how to personalise a class by assigning it an icon.

#Require GuiTools;

// A class is created:
Class @TestA {
 Real value
};

// An icon is registered via its base64 coding:
Real GuiTools::ImageManager::defineImageFromData("checkedBox",
 "R0lGODdhCwALAJEAAH9/f////wAAAP///ywAAAAACwALAAACLISPRvEPAE8oAMUXCYAg"
 "JSEiAYRIQkSCAgTJjgiAoEgSEQGEJIRiA9wdwUcrADs=");

// The icon is assigned to the class created.
Real GuiTools::ImageManager::setIconForClass("@TestA", "checkedBox");

// An instance of a class is created
@TestA inst1 = [[Real value = 1.0]];

4.2.2 Contextual menu management (MenuManager)

If the user right-clicks over the TOLBase object inspector variables panel, a contextual menu
with options relative to the active selection will open (see figure 4.2.1). The active selection can
contain various TOL objects and the contents of the menu depend on the composition of this
selection.

Figure 4.2.1: Contextual menu opened over a Serie object type.

4 TOL packages TOL Manual(ed.1) 77

When there is a multiple selection, involving different types of objects, the menu is organised
into submenus, one for each type of data.

With the MenuManager module, it's possible to extend the set of menu options available by

default in TOLBase.

Arguments to define a contextual menu

When we define a menu option we have to specify the set of arguments used to configure its

appearance and functionality. The menu-options builder receives aNameBlock which

contains the arguments of the menu-option being defined. The only

argument that is required at the moment of defining a menu option is

its name (Text name). Bear in mind that this must be unique. For example

NameBlock menuOption_arguments = [[
 Text name = "Entrada1"
]];

The attributes that configure the visual appearance of a menu entry are:

• Text label: this contains the etiquette that is displayed in the menu for the defined

entry. If it isn't defined, it is assumed to be the same as the name.

• Text image: this contains the name of an image registered in ImageManager (see

section 4.2.1), which takes the vale "" by default and doesn't display an image in the

menu entry.

• Real rank: contains a numerical value which is used to order entries within a

submenu. By default, this becomes the value 0. Entries with the same rank value are

ordered according the definition order.

The attributes that configure the functionality of a menu entry are:

• Real flagGroup: A boolean value that specifies if the action is applied to an instance

or a set of instances. If 0 (false), the option appears as available in the menu when the

active selection only contains an object of the associated type: In the opposite case !=0

(true), it appears as available in the menu when the active selection contains more than
one object of the associated type.

• Code|Set CmdInvoke: can be a Code object or a Set that contains a Code object.

The Code object is a function that must return a Real (which is ignored) and is used as

an action to be run when the menu-option is selected. The function takes the object
contained in the active selection as a first argument (if flagGroup is false) or object-set

(if flagGroup is true). Additionally, it receives in the second argument a set (Set) with

the own parameter data defined for the option ******** Literal translation. This set of
parameters is specified at the time of defining the option.

• Code|Set CmdCheck: can be a Code object or aSet that contains a Code object.

Code is a user function that is used to manage the state in which the menu-option is

displayed. The function should return !=0 (true) to indicate that the option should

appear as activated or 0 (false) to indicate that the options should appear as

disactivated. It takes the same arguments as the function referenced in the CmdInvoke

attribute.

4 TOL packages TOL Manual(ed.1) 78

• Text delegateOn: the value of the delegateOn attribute is as an expression to be

evaluated on the objective object,returned as a result on which the (Check or Invoke

action) will be run.

We now describe the functions available inside the MenuManager module, specifically those

used for the definition of contextual menu options associated with data-types.

• Real defineMenuCommand(Text typeName, NameBlock args): this defines

an option available for objects of the data-type given in typeName. It's not actually

necessary for the data-type to exist at the moment of defining the option. The
NameBlock args argument contains the attributes that specify the visual appearance

and action associated with the option.

• Real replaceMenuCommand(Text typeName, NameBlock args):similar to

defineMenuCommand but if the option is already defined, it replaces its definition with

the new attributes given in args.

• Real defineOptionLabel(NameBlock args) : this defines the visual appearance

of a menu label. This applies to labels used for sub-menu entries such as the one needed
to group the menu options for each data-type included in the active selection or for sub-
menus defined in the name of other menu entries.

• Real replaceOptionLabel(NameBlock args) : similar to

defineOptionLabelbut if the oprion is already defined, it replaces its definition with

the new attributes given in args.

The menu options can be shared by more than one data-type. To do this we must define the
menu-option once for the first data-type. For all other data-types we simply indicate the the
name of the already created menu-option as an argument.

Contextual sub-menus

Entries in the contextual menu can be organised into sub-menus. To do this, we specify the name
of the hierarchical<sub-menu structure using the t0/>/ seperator.

For example the name of the entry "Padre1/Padre2/Entrada" defines "Padre1" as a sub-

menu type menu entry in the superior level. "Padre1/Padre2" is defined as a sub-menu type

menu entry inside the sub-menu "Padre1" and "Padre1/Padre2/Entrada" as a menu

entry inside the sub-menu "Padre1/Padre2". The visual appearance of the entries associated

with the sub-menus "Padre1" and "Padre1/Padre2" can be configured with either the

defineOptionLabel function, or the replaceOptionLabel function.

Example:

We finish this section by using a simple example that illustrates the functionailty of
MenuManager.

#Require GuiTools;

// We want to associate a new menu-option with real numbers

// We create a function that will take the real number
// and an extra set of arguments that we won't use:
Real RealSquare(Real x, Set args) {
 Real sqX = x*x;

4 TOL packages TOL Manual(ed.1) 79

 WriteLn("El cuadrado de " << x << " es " << sqX);
 sqX
};

// We create the menu option for the data-type "Real"
Real GuiTools::MenuManager::defineMenuCommand("Real", [[
 Text name = "Real_SQ";
 Text label = "Square of Real";
 Real flagGroup = 0;
 Set CmdInvoke = [[RealSquare]]
]]);

4.2.3 Container editing

Another of the functions included in GuiTools is that which allows us to interactively edit

member-data of a Set or NameBlock, which here we will call contenedor. Upon running this

editing function, a dialogue window opens in which we can edit values associated with the
container member-data.

Editing can be done in two states: modal or non-modal. In the non-modal state, the editing
function opens the window and returns immediately, continuing its evaluation with the
instructions below. During this process the editing window remains open. When run in modal
state, the function doesn't return until we have closed the editing window.

For example, in figure4.2.2 we can see the window that appears upon commencing the editing of

the elements of a Set orNameBlock with two items of member-data.

Figure 4.2:Example of an editing window for a container object Set or NameBlock.

The functions that permit the editing of container member data are:

• NameBlock TkNameBlockEditor(NameBlock options, Set args) this

opens a window, which contains a table, where the values of member-data of the
t2/>NameBlock options can be edited.

• Set TkSetEditor(Set options, Set args) this opens a window, which

contains a table, where the values of member-data of the Set options can be edited.

The argument Set args is a set with pair cardinalidad. Elements in odd positions are

interpreted as an option name and the following element as its value, e.g. [["-modal",

"yes", ...]] specifies the option with namet <6/>"–modal" and value "yes". In both

functions the argument Set args defines the state in which the window is open:

• modal: when the argument args is the empty set, the modal editing is then carried out.

This can also be specified with Set args = [["-modal", "yes"]].

• no modal: is specified by including the option "-modal" with valie "no" in the

arguments. Furthermore, the following options should be included:

4 TOL packages TOL Manual(ed.1) 80

o "–address": with an equal value to the physical address of the object to be

edited. The physical address is obtained via the GetAddressFromObject

function.

o "–tolcommit": with an equal value to the name of the function to be run once

the edited data is accepted. This function takes the original object that is being
edited as a first argument, as well as a copy of the edited data.

In addition to the previous options, the following ones can also be used:

• "-showbuttons": determines whether the Aceptar/Cancelar buttons are displayed in

the window. It can take Boolean values 0 or 1 of Real type, or "yes" or "no" of Text

type. By default it takes the value 1, which is to say that it displays the buttons.

• "-title": takes a Text-type value, which is uses the window's title. By default, one of

the values "Edit Set" or "Edit NameBlock" is used, depending on if the object is a

Set or NameBlock respectively.

• "-checkchanges": determines if a warning message appears or not when the window

is closed, when there are pending unsaved changes in the original object. It can take

boolean values 0 or 1 of Real type, or "yes" or "no" of Text type. By default, it takes

the value 1; that is to say that upon closing the window, if there are pending unsaved

changes, the user is warned and given the opportunity to save if necessary

The following examples illustrate the use of the aforementioned editing functions:

Example of the editor in modal form:

#Require GuiTools;
Set s1 = { [[Real a = 1; Real b = 2]] };
Set s2 = GuiTools::TkSetEditor(s1, Empty);

Example of the editor in non-modal form:

#Require GuiTools;
Set s1 = { [[Real a = 1; Real b = 2]] };

Function instigated in the event of accepting the editing window:
Real ApplyChanges(Set to, Set from) {
 to::a := from::a;
 to::b := from::b;
 Real 1
};

Set s2 = GuiTools::TkSetEditor(s1, [[
 "-title", "Título",
 "-modal", "no",
 "-tolcommit", "ApplyChanges",
 "-address", GetAddressFromObject(s1)
]]);

WriteLn("Sigue la ejecuación...");

The windows opened in the two previous examples are similar. The only difference is that, in the
first, the evaluation is delayed until the editing window closes while in the second the code
evaluation continues

4 TOL packages TOL Manual(ed.1) 81

4.3 TolExcel

The TolExcel package implements functions for the input and output from files Excel 97-2003

(.xls). Let's now look at the basic elements involved in the use of TolExcel.

TolExcel defines a main class called@WorkBook, which allows us to instance objects

associated with Excel files. The class methods which allow us to create @WorkBook instances

are Open and New:

• @WorkBook xls = @WorkBook::Open(Text path); creates an

instance from the existing file, with the indicated path in the

argument path. The file can't be open at the same time as Excel asTolExcel requests

access to an exclusive file.

• @WorkBook xls = @WorkBook::New(Text path, Anything wsInfo);

creates an instance of a new file, the new file is created in the path indicated in the

argumentpath. The argument wsInfo specifies the worksheets that the file will

contain. If wsInfo is a Realnumber, an object will be created with the corresponding

number of worksheets. If it is a (Set), as many worksheets as there are set-elements will

be created. If the - nth element of the set is a (Text), the -nth worksheet will have the

name of the value of this element. In the opposite scenario, it will take the default name
assigned to it by Excel.

The changes made in a @WorkBook instance can be stored on disk using the following methods:

• Real xls::Save(Real void): saves the changes made in the xls instance in the

relevant associated file.

• Real xls::SaveAs(Text path): saves the changes made in the xls instance in

the file indicated in the path. From this point on, the file specified in the argument path

is associated in such a way that future invocations of the Save method will affect this

file.

The majority of the methods of a @WorkBook xls work on cells or cell-ranges relative to the

active worksheet. By default, an instance of @WorkBook establishes the first worksheet as

active. If we wish to change the worksheet we can run the methods ActivateWS and

ActivateNamedWS:

• Real xls::ActivateWS(Real workSheetNumber) : changes the active

worksheet. The new active worksheet is the one that appears in the index which is equal
to the value of the argument workSheetNumber. Valid indexes start from 1 until the

number of worksheets of the instance. The method returns True if it has been possible

to change the active worksheet, or False in the case that it hasn't.

• Real ActivateNamedWS(Text workSheetName): establishes the active

worksheet as the one whose name coincides with the value of the argument

workSheetName. The method returns True if it has been possible to change the active

worksheet, or False in the case that it hasn't.

After working with the instance, we should close the connection with the file via the Close

method:

4 TOL packages TOL Manual(ed.1) 82

• Real xls::Close(Real void) : closes the connection with the physical file, freeing

up all associated resources. From the moment Close is run onwards, the instance will

remain invalid. It's the programmer's responsibility to run one of the methods Save

orSaveAs prior to updating the file content with the changes made safely stored in the

memory.

There are some reading function for cells and and ranges that allow stored values to be read,
without having to specify a data-type for the result in TOL. In these cases, as good an effort as
possible is made to infer what the data-type that corresponds to TOL is. The possible data-types

that we can obtain are Real, Text and Date. If the previous data-types aren't recognised, the

value Text "" will be returned.

The reading and writing functions take a cell-reference or cell-range as arguments following the
follow rules:

• cell: given by a pair whole indices (row,col) where row indicates the row and col

the numeric column number, taking the value 1 as the index of columnA and increasing

accordingly. For example, the cell B3 has (3,2) as its coordinates.

• range: given by two pairs, esquina and extension. The corner of the range is

(row_ini,col_ini) which indicates the cell coordinates and extension given by

(row_num,col_num) which indicates that the ranges extends from the first cell

row_num in descending rows and col_num from left to right. For example, the range

A1:D1 would be specified as (row_ini,col_ini)=(1,1) y

(row_num,col_num)=(1,4).

Below are some of the functions used to read values from the cells of an active worksheet:

• Set xls::ReadRange(Real row_ini, Real col_ini, Real row_num,

Real col_num, Set colDef) : reads the cell range specified by the initial cell in

coordinates (row_ini, col_ini) and extended row_num in descending rows

col_num left to right. The result is a set in which each element is also a set that

corresponds with a row from the read field.

• VMatrix ReadVMatrix(Real row_ini, Real col_ini, Real row_num,

Real col_num) : reads the matrix contained in the cell range specified by the initial

cell in coordinates(row_ini, col_ini) and extended row_num in descending rows

col_num left to right. The result is a VMatrix object. Empty or non-numeric cells are

read as the default value.

• Matrix ReadMatrix(Real row_ini, Real col_ini, Real row_num,

Real col_num) : similar to ReadVMatrix, except for the fact that a Matrix type

object is the result.

• Set ReadSeriesByCol(Real row_ini, Real col_ini, Real row_num,

Real col_num, TimeSet dating, Text dateFormat): reads a set of series

contained in the range specified by the arguments (row_ini,col_ini, row_num,

col_num). The first row of the range is the one which contains the data headings. The

first column contains the dates of the series, those which are specified in the time-set in

the dating argument, if dating is W therefore the name of the date is read from the

cell heading of the first column. When no time-set is specified then C is used as default.

4 TOL packages TOL Manual(ed.1) 83

The columns, from the second one onwards, contain the data of those series to which the
content of the corresponding cell heading is assigned as a name. Dates are interpreted

according to the format specified in the dateFormat argument. If the value of this

argument is “”, then they are interpreted according to TOL's default format, by making

use of the TextToDate function.

• Set GetFullSeriesByCol(TimeSet dating, Text dateFormat): similar to

the ReadSeriesByCol function. It takes its range from the minimum range that

contains data in the active worksheet.

• As well as the aforementioned methods of reading, we have the following one for writing
in the active worksheet's cell ranges:

• Anything WriteCell(Real row, Real col, Anything value): writes a

value in the cell with coordinates (row,col).

• Real WriteRange(Real row, Real col, Set cellValues) : writes a set of

sets starting from the cell with coordinates (row,col). The resulting range will have as

many rows as the subsets have cellValues, and as many columns as the longitude of

the largest subset.

• Real WriteMatrix(Real row, Real col, Matrix values): writes the

matrix values starting from the cell with coordinates (row,col). The resulting range

will have the file/column dimensions as the input matrix.

• Real WriteVMatrix(Real row, Real col, VMatrix values): similar to

WriteMatrix.

• Real WriteSeries(Real row, Real col, Set series, Text

dateFormat): writes a series-set starting from the cell specified by the coordinates

(row,col). The date column is written according to the format specified in the

dateFormat argument.

Example:

Lastly, let's illustrate the use of TolExcel by way of an example. Let's take a look at the time-

series of international air passengers initially referenced in the book «Time Series: Forecast and

Control by Box, Jenkins and Reinsel» (ISBN: 978-0470272848). The Excel data-file can be
downloaded from the url: http://packages.tol-project.org/data/AirPassangers.xls. This file
contains the monthly total of international passengers covering the period between January
1949 to December 1960.

We'll now show the TOL code used for loading data, together with an image of the graph of said
data (see figure 4.3.1).

#Require TolExcel;
// abro el excel
TolExcel::@WorkBook xls =
 TolExcel::@WorkBook::Open("AirPassangers.xls");
Real xls::ActivateWS(1); // activate worksheet 1
// I read the data-series contained in the active worksheet
Set series = xls::GetFullSeriesByCol(TimeSet W, Text "");
Serie AirPassangers = series[1];
// I close the connection with the Excel file.
Real xls::Close(?);

4 TOL packages TOL Manual(ed.1) 84

Figure 4.3.1: Graph generated in TOLBase, showing the data for the passenger total in the

example.

4.4 Other packages

TOL's official package repository (OTAN) offers other packages related with concepts such as
optimisation, gis, modelling, linear algebra and so on. In this section, we'll give a general
overview of some of the ones that may be of most interest.

4.4.1 Paquetes de MMS

As mentioned in section 3.4.6, some of the public packages available in the OTAN repository
have been developed in a different trac frame, one oriented towards the creation of a statistical-
model specification system known as MMS (Model Management System).

This MMS package, along with others such as RandVar or DecoTools, is managed from this

other trac. For further information about these packages, consult the project's website
https://mms.tol-project.org or the corresponding MMS manual.

4.4.2 TolGlpk

k TolGlpk runs a native interface with the GLPK package (GNU Linear Programming Kit,

http://www.gnu.org/software/glpk). Although similar in terms of functionality to Rglpk

(contenido en StdLib), it's more efficent. This is due to the fact that it establishes a direct link
with the functionality run in C without having to pass through R. For this reason we recommend
its use in place of Rglpk when it's necessary to resolve linear optimisation problems.
Additionally, we can run other options Rglpk. The package's source-code can be explored at:
OTAN/TolGlpk.

4.4.3 NonLinGloOpt

 NonLinGloOpt runs a native interface with theNLopt package (http://ab-initio.mit.edu/nlopt).
This offers functionality for the optimisation of non-linear functions with equality and non-

4 TOL packages TOL Manual(ed.1) 85

linear inequality functions. There is a documentation page available for this package at:
https://www.tol-project.org/wiki/OfficialTolArchiveNetworkNonLinGloOpt.

4.4.4 TolIpopt

TolIpopt is another non-linear optimisation package based on the interior point method. Found
within the package, run in C++, IPOPT (Interior Point OPTimizer, https://projects.coin-
or.org/Ipopt). The package's source-code and some examples can be found via the link:
OTAN/TolIpopt.

4.4.5 MatQuery

MatQuery runs consult, select and classify functions for matrices.

For or the EvalSet. This package is a good example of the efficient use of matrix operators.

The source-code can be explored at: OTAN/MatQuery.

4.4.6 BysMcmc

BysMcmc allows cadenas de markov (MCMC) to be created for the parameters of hierarchical
linear models with normal errors. Amongst the various model characteristics, it is worth
highlighting the possibility of specificying an ARIMA structure for errors, linear parameter
priori information, non-linear effects, linear restrictions etc.

For a broader explanation of the theory applied in this package, we recommend reading the
document: OTAN/BysMcmc/bsr/doc/BSR_Bayesian_Sparse_Regression.pdf.

The most convenient way of using this package is through the MMS package. The package's
source-code can be explored from OTAN/BysMcmc.

Index

Indices

Figure index

Figure 1.1.1: TOL-Project website.

Figure 1.2.1: New ticket creation form.

Figure 1.3.1: TOLsource-code web explorer in the

Figure 1.3.2: TOL code revision explorer in the

Figure 1.4.1: Table of versions available for download in

Figure 1.5.1: Main TOLBase window: object inspector.

Figure 1.5.2: TOLBase showing some of its functionalities:

Figure 3.4.1: TOLBase package-manager interface.

Figura 4.2.1: Contetual menu opened up on an

Figura 4.2.2: Example an object-container editing

Figura 4.3.1: Chart generated in TOLBase

Table index

xTable 2.1.1: Classification of ASCII characters in

Table 2.1.2:Classification of extra LATIN1 charcters (ISO 8859

Table 2.1.3: Escaped characters in

Table 2.2.1: Internal procedure of

Table 2.4.1: Example in table form of the result of applying a delay and a difference to a time

TOL manual

1st edition. Fecha: 13/06/2013

Authors: Pedro Gea y Jorge S. Pérez.

Collaboraters: Miguel Á. Fernández and Claudia Escalonilla.
Editor: Pedro Gea.

Correspondence: pgea@bayesinf.com

TOL Manuel (ed.1)

..

Figure 1.2.1: New ticket creation form...

code web explorer in the TOL-Project trac. ..

code revision explorer in the TOL-Project trac . ..

Figure 1.4.1: Table of versions available for download in Windows. ..

indow: object inspector. ..

showing some of its functionalities: TOL code-evaluation console.

manager interface. ..

Figura 4.2.1: Contetual menu opened up on anSerie object-type. ..

container editing-window: Set or NameBlock.

TOLBase with all of the total passener data from the example.

xTable 2.1.1: Classification of ASCII characters in TOL. ..

Table 2.1.2:Classification of extra LATIN1 charcters (ISO 8859-1) in TOL.

Table 2.1.3: Escaped characters in TOL text-chains. ..

Table 2.2.1: Internal procedure of TOL in set creation. ..

Table 2.4.1: Example in table form of the result of applying a delay and a difference to a time

13/06/2013

Authors: Pedro Gea y Jorge S. Pérez.
Collaboraters: Miguel Á. Fernández and Claudia Escalonilla.

pgea@bayesinf.com.

www.bayesforecast.com
www.tol

86

... 5

... 5

.. 8

... 8

... 9

.. 12

evaluation console................................... 13

.. 71

... 76

... 79

the total passener data from the example. 84

... 17

... 17

.. 20

... 24

Table 2.4.1: Example in table form of the result of applying a delay and a difference to a time-series. 48

www.bayesforecast.com
www.tol-project.org

