close
Warning:
Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.
- Timestamp:
-
Dec 25, 2010, 8:14:19 PM (14 years ago)
- Author:
-
Víctor de Buen Remiro
- Comment:
-
--
Legend:
- Unmodified
- Added
- Removed
- Modified
-
v4
|
v5
|
|
75 | 75 | [[LatexEquation( D_{k}^{3}\left(\beta\right)=\begin{cases} 0 & \forall d_{k}\left(\beta\right)\leq0\\ d_{k}^{3}\left(\beta\right) & \forall d_{k}\left(\beta\right)>0\end{cases} )]] |
76 | 76 | |
77 | | is a continuous and differentiable in [[LatexEquation( \mathbb{R}^{n} )]] |
| 77 | is continuous and differentiable in [[LatexEquation( \mathbb{R}^{n} )]] |
78 | 78 | |
79 | 79 | [[LatexEquation( \frac{\partial D_{k}^{3}\left(\beta\right)}{\partial\beta_{i}}=\begin{cases} 0 & \forall d_{k}\left(\beta\right)\leq0\\ 3d_{k}^{2}\left(\beta\right)A_{ki} & \forall d_{k}\left(\beta\right)>0\end{cases} )]] |
80 | 80 | |
81 | | The feasibility condition can then be defined as a single continuous nonlinear |
82 | | inequality and differentiable everywhere |
| 81 | The feasibility condition can be defined as a single nonlinear |
| 82 | inequality continuous and differentiable everywhere |
83 | 83 | |
84 | 84 | [[LatexEquation( g\left(\beta\right)=\underset{k=1}{\overset{r}{\sum}}D_{k}^{3}\left(\beta\right)\leq0 )]] |
… |
… |
|
90 | 90 | == Multinormal prior == |
91 | 91 | |
| 92 | When we know that a single variable should fall symmetrically close to a known value |
| 93 | we can express telling that it have a normal distribution with average in these value. |
| 94 | This type of prior knowledge can be extended to higher dimensions by the multinormal |
| 95 | distribution |
92 | 96 | |
| 97 | [[LatexEquation( \beta\sim N\left(\mu,\Sigma\right) )]] |
| 98 | |
| 99 | which likelihood function is |
| 100 | |
| 101 | [[LatexEquation( lk\left(\beta\right)=\frac{1}{\left(2\pi\right)^{n}\left|\Sigma\right|^{\frac{1}{2}}}e^{^{-\frac{1}{2}\left(\beta-\mu\right)^{T}\Sigma^{-1}\left(\beta-\mu\right)}} )]] |
| 102 | |
| 103 | The log-likelihood is |
| 104 | |
| 105 | [[LatexEquation( L\left(\beta\right)=\ln\left(lk\left(\beta\right)\right)=-\frac{n}{2}\ln\left(2\pi\right)-\frac{1}{2}\ln\left(\left|\Sigma\right|\right)-\frac{1}{2}\left(\beta-\mu\right)^{T}\Sigma^{-1}\left(\beta-\mu\right) )]] |
| 106 | |
| 107 | The gradient is |
| 108 | |
| 109 | [[LatexEquation( \left(\frac{\partial L\left(\beta\right)}{\partial\beta_{i}}\right)_{i=1\ldots n}=-\Sigma^{-1}\left(\beta-\mu\right) )]] |
| 110 | |
| 111 | and the hessian |
| 112 | |
| 113 | [[LatexEquation( \left(\frac{\partial^{2}L\left(\beta\right)}{\partial\beta_{i}\partial\beta_{j}}\right)_{i,j=1\ldots n}=-\Sigma^{-1} )]] |
| 114 | |
| 115 | |
93 | 116 | == Inverse chi-square prior == |
94 | 117 | |
95 | 118 | |
| 119 | == Transformed prior == |
| 120 | |
| 121 | Sometimes we have an information prior that has a simple distribution over a |
| 122 | transformation of original variables. For example, if we know that a set of |
| 123 | variables has a normal distribution with average equal to another variable, |
| 124 | as in the case of latent variables in hierarquical models |
| 125 | |
| 126 | [[LatexEquation( \beta_{i}\sim N\left(\beta_{1},\sigma\right)\forall i=2\ldots n )]] |
| 127 | |
| 128 | Then we can define a variable transformation like this |
| 129 | |
| 130 | [[LatexEquation( \gamma \left(\beta\right)=\left(\begin{array}{c} \beta_{2}-\beta_{1}\\ \vdots\\ \beta_{n}-\beta_{1}\end{array}\right)\in\mathbb{R}^{n-1} )]] |
| 131 | |
| 132 | and define the simple normal prior |
| 133 | |
| 134 | [[LatexEquation( \gamma\sim N\left(0,\sigma^{2}I\right) )]] |
| 135 | |
| 136 | Then the log-likelihood of original prior will be calculated from the |
| 137 | transformed one as |
| 138 | |
| 139 | [[LatexEquation( L\left(\beta\right)=L^{*}\left(\gamma\left(\beta\right)\right) )]] |
| 140 | |
| 141 | If we know the first and second derivatives of the transformation |
| 142 | |
| 143 | [[LatexEquation( \frac{\partial\gamma_{k}}{\partial\beta_{i}} )]] |
| 144 | |
| 145 | [[LatexEquation( \frac{\partial^{2}\gamma_{k}}{\partial\beta_{i}\partial\beta_{j}} )]] |
| 146 | |
| 147 | the we can calculate the original gradient and the hessian after the gradient |
| 148 | and the hessian of the transformed prior as following |
| 149 | |
| 150 | [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}}=\underset{k=1}{\overset{K}{\sum}}\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partial\beta_{i}} )]] |
| 151 | |
| 152 | [[LatexEquation( \frac{\partial L^{2}\left(\beta\right)}{\partial\beta_{i}\partial\beta_{j}}=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\beta_{j}}\frac{\partial\gamma_{k}}{\partial\beta_{i}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partial\beta_{i}\partial\beta_{j}}\right)=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partial\beta_{i}}\frac{\partial\gamma_{k}}{\partial\beta_{j}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partial\beta_{i}\partial\beta_{j}}\right) )]] |
96 | 153 | |
97 | 154 | |
| 155 | |