close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Version 8 and Version 9 of OfficialTolArchiveNetworkBysPrior


Ignore:
Timestamp:
Dec 26, 2010, 12:45:33 AM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkBysPrior

    v8 v9  
    3232can be expressed as a constrained uniform distribution.
    3333
    34 Let [[LatexEquation( \beta )]] a uniform random variable in a region
     34Let [[LatexEquation( x )]] a uniform random variable in a region
    3535[[LatexEquation(\Omega\in\mathbb{R}^{n} )]] which likelihood function is [[BR]]
    3636
    37 [[LatexEquation(lk\left(\beta\right) \propto 1 )]]
     37[[LatexEquation(lk\left(x\right) \propto 1 )]]
    3838
    3939Since the logarithm of the likelihood but a constant is zero, when
     
    5151bounds:[[BR]][[BR]]
    5252
    53 [[LatexEquation( \beta\in\Omega\Longleftrightarrow l_{k}\leq\beta_{i_k}\leq u_{k}\wedge-\infty\leq l_{k}<u_{k}\leq\infty\forall k=1\ldots r )]]
     53[[LatexEquation( x\in\Omega\Longleftrightarrow l_{k}\leqx_{i_k}\leq u_{k}\wedge-\infty\leq l_{k}<u_{k}\leq\infty\forall k=1\ldots r )]]
    5454
    5555If both lower and upper bounds are non finite, then we call it the neutral
     
    6363A polytope prior is defined by a system of compatible linear inequalities [[BR]]
    6464
    65 [[LatexEquation( A\beta\leq a\wedge A\in\mathbb{R}^{r\times n}\wedge a\in\mathbb{R}^{r} )]]
     65[[LatexEquation( Ax\leq a\wedge A\in\mathbb{R}^{r\times n}\wedge a\in\mathbb{R}^{r} )]]
    6666
    6767|| ''bounded region''[[BR]][[Image(source:/tolp/OfficialTolArchiveNetwork/BysPrior/doc/image003.png)]] || ''unbounded region''[[BR]][[Image(source:/tolp/OfficialTolArchiveNetwork/BysPrior/doc/image002.png)]] ||
     
    7070An special and common case of polytope region is the defined by order relations like
    7171
    72 [[LatexEquation( \beta_{i}}\leq\beta_{j}})]]
     72[[LatexEquation( x_{i}}\leqx_{j}})]]
    7373
    7474We can implement this type of prior by means of a set of [[LatexEquation( r )]]
     
    7878that is equivalent to the full set of linear inequations.
    7979
    80 ||If we define [[BR]][[BR]] [[LatexEquation( d\left(\beta\right)=A\beta-a=\left(d_{k}\left(\beta\right)\right)_{k=1\ldots r} )]] then [[br]][[br]] [[LatexEquation( D_{k}\left(\beta\right)=\begin{cases} 0 & \forall d_{k}\left(\beta\right)\leq0\\ d_{k}\left(\beta\right) & \forall d_{k}\left(\beta\right)>0\end{cases} )]] [[br]][[br]] is a continuous function in [[LatexEquation( \mathbb{R}^{n}  )]] and [[br]][[br]] [[LatexEquation( D_{k}^{3}\left(\beta\right)=\begin{cases} 0 & \forall d_{k}\left(\beta\right)\leq0\\ d_{k}^{3}\left(\beta\right) & \forall d_{k}\left(\beta\right)>0\end{cases}  )]] [[br]][[br]] is continuous and differentiable in [[LatexEquation( \mathbb{R}^{n} )]] [[br]][[br]] [[LatexEquation( \frac{\partial D_{k}^{3}\left(\beta\right)}{\partial\beta_{i}}=\begin{cases} 0 & \forall d_{k}\left(\beta\right)\leq0\\ 3d_{k}^{2}\left(\beta\right)A_{ki} & \forall d_{k}\left(\beta\right)>0\end{cases}  )]] || [[Image(source:/tolp/OfficialTolArchiveNetwork/BysPrior/doc/image004.png)]] ||
     80||If we define [[BR]][[BR]] [[LatexEquation( d\left(x\right)=Ax-a=\left(d_{k}\left(x\right)\right)_{k=1\ldots r} )]] then [[br]][[br]] [[LatexEquation( D_{k}\left(x\right)=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ d_{k}\left(x\right) & \forall d_{k}\left(x\right)>0\end{cases} )]] [[br]][[br]] is a continuous function in [[LatexEquation( \mathbb{R}^{n}  )]] and [[br]][[br]] [[LatexEquation( D_{k}^{3}\left(x\right)=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ d_{k}^{3}\left(x\right) & \forall d_{k}\left(x\right)>0\end{cases}  )]] [[br]][[br]] is continuous and differentiable in [[LatexEquation( \mathbb{R}^{n} )]] [[br]][[br]] [[LatexEquation( \frac{\partial D_{k}^{3}\left(x\right)}{\partialx_{i}}=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ 3d_{k}^{2}\left(x\right)A_{ki} & \forall d_{k}\left(x\right)>0\end{cases}  )]] || [[Image(source:/tolp/OfficialTolArchiveNetwork/BysPrior/doc/image004.png)]] ||
    8181
    8282The feasibility condition can be defined as a single nonlinear
    8383inequality continuous and differentiable everywhere
    8484
    85 [[LatexEquation( g\left(\beta\right)=\underset{k=1}{\overset{r}{\sum}}D_{k}^{3}\left(\beta\right)\leq0 )]]
     85[[LatexEquation( g\left(x\right)=\underset{k=1}{\overset{r}{\sum}}D_{k}^{3}\left(x\right)\leq0 )]]
    8686
    8787The gradient of this function is
    8888
    89 [[LatexEquation( \frac{\partial g\left(\beta\right)}{\partial\beta_{i}}=3\underset{k=1}{\overset{r}{\sum}}D_{k}^{2}\left(\beta\right)A_{ki} )]]
     89[[LatexEquation( \frac{\partial g\left(x\right)}{\partialx_{i}}=3\underset{k=1}{\overset{r}{\sum}}D_{k}^{2}\left(x\right)A_{ki} )]]
    9090
    9191== Random priors ==
     
    101101distribution
    102102
    103  [[LatexEquation(  \beta\sim N\left(\mu,\Sigma\right) )]]
     103 [[LatexEquation(  x\sim N\left(\mu,\Sigma\right) )]]
    104104
    105105which likelihood function is
    106106
    107  [[LatexEquation(  lk\left(\beta\right)=\frac{1}{\left(2\pi\right)^{n}\left|\Sigma\right|^{\frac{1}{2}}}e^{^{-\frac{1}{2}\left(\beta-\mu\right)^{T}\Sigma^{-1}\left(\beta-\mu\right)}} )]]
     107 [[LatexEquation(  lk\left(x\right)=\frac{1}{\left(2\pi\right)^{n}\left|\Sigma\right|^{\frac{1}{2}}}e^{^{-\frac{1}{2}\left(x-\mu\right)^{T}\Sigma^{-1}\left(x-\mu\right)}} )]]
    108108
    109109The log-likelihood is
    110110 
    111  [[LatexEquation( L\left(\beta\right)=\ln\left(lk\left(\beta\right)\right)=-\frac{n}{2}\ln\left(2\pi\right)-\frac{1}{2}\ln\left(\left|\Sigma\right|\right)-\frac{1}{2}\left(\beta-\mu\right)^{T}\Sigma^{-1}\left(\beta-\mu\right) )]]
     111 [[LatexEquation( L\left(x\right)=\ln\left(lk\left(x\right)\right)=-\frac{n}{2}\ln\left(2\pi\right)-\frac{1}{2}\ln\left(\left|\Sigma\right|\right)-\frac{1}{2}\left(x-\mu\right)^{T}\Sigma^{-1}\left(x-\mu\right) )]]
    112112 
    113113The gradient is
    114114
    115  [[LatexEquation( \left(\frac{\partial L\left(\beta\right)}{\partial\beta_{i}}\right)_{i=1\ldots n}=-\Sigma^{-1}\left(\beta-\mu\right) )]]
     115 [[LatexEquation( \left(\frac{\partial L\left(x\right)}{\partialx_{i}}\right)_{i=1\ldots n}=-\Sigma^{-1}\left(x-\mu\right) )]]
    116116
    117117and the hessian
    118118
    119  [[LatexEquation( \left(\frac{\partial^{2}L\left(\beta\right)}{\partial\beta_{i}\partial\beta_{j}}\right)_{i,j=1\ldots n}=-\Sigma^{-1} )]]
     119 [[LatexEquation( \left(\frac{\partial^{2}L\left(x\right)}{\partialx_{i}\partialx_{j}}\right)_{i,j=1\ldots n}=-\Sigma^{-1} )]]
    120120 
    121121
    122 == Transformed prior ==
     122=== Inverse chi-square prior ===
     123
     124In a model with normal waste is permissible to award the unknown variance an
     125inverse chi-square distribution with scale parameter equal to the average of
     126squares of residuals and freedom degrees the data length.
     127
     128The likelihood is now the scalar function
     129
     130 [[LatexEquation( lk\left(x\right)=\frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)}x^{-\frac{\nu}{2}-1}e^{-\frac{\nu}{2x}} )]]
     131 
     132The log-likelihood is
     133 
     134 [[LatexEquation( L\left(x\right)=\frac{\nu}{2}\ln\left(\frac{\nu}{2}\right)-\ln\left(\Gamma\left(\frac{\nu}{2}\right)\right)-\left(\frac{\nu}{2}+1\right)x-\frac{\nu}{2x} )]]
     135
     136The first derivative is
     137 
     138 [[LatexEquation( \frac{dL\left(x\right)}{dx}=-\left(\frac{\nu}{2}+1\right)+\frac{\nu}{2x^{2}} )]]
     139
     140The second derivative is
     141 
     142 [[LatexEquation( \frac{d^{2}L\left(x\right)}{d^{2}x}=-\frac{\nu}{6x^{3}} )]]
     143 
     144
     145
     146=== Transformed prior ===
    123147
    124148Sometimes we have an information prior that has a simple distribution over a
     
    127151as in the case of latent variables in hierarquical models
    128152
    129 [[LatexEquation( \beta_{i}\sim N\left(\beta_{1},\sigma\right)\forall i=2\ldots n )]]
     153[[LatexEquation( x_{i}\sim N\left(x_{1},\sigma\right)\forall i=2\ldots n )]]
    130154
    131155Then we can define a variable transformation like this
    132156
    133 [[LatexEquation( \gamma \left(\beta\right)=\left(\begin{array}{c} \beta_{2}-\beta_{1}\\ \vdots\\ \beta_{n}-\beta_{1}\end{array}\right)\in\mathbb{R}^{n-1} )]]
     157[[LatexEquation( \gamma \left(x\right)=\left(\begin{array}{c} x_{2}-x_{1}\\ \vdots\\ x_{n}-x_{1}\end{array}\right)\in\mathbb{R}^{n-1} )]]
    134158
    135159and define the simple normal prior
     
    140164transformed one as
    141165
    142 [[LatexEquation( L\left(\beta\right)=L^{*}\left(\gamma\left(\beta\right)\right) )]]
     166[[LatexEquation( L\left(x\right)=L^{*}\left(\gamma\left(x\right)\right) )]]
    143167
    144168If we know the first and second derivatives of the transformation
    145169
    146 [[LatexEquation( \frac{\partial\gamma_{k}}{\partial\beta_{i}}  )]]
     170[[LatexEquation( \frac{\partial\gamma_{k}}{\partialx_{i}}  )]]
    147171
    148 [[LatexEquation( \frac{\partial^{2}\gamma_{k}}{\partial\beta_{i}\partial\beta_{j}}  )]]
     172[[LatexEquation( \frac{\partial^{2}\gamma_{k}}{\partialx_{i}\partialx_{j}}  )]]
    149173
    150174the we can calculate the original gradient and the hessian after the gradient
    151175and the hessian of the transformed prior as following
    152176
    153 [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}}=\underset{k=1}{\overset{K}{\sum}}\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partial\beta_{i}}  )]]
     177[[LatexEquation( \frac{\partial L\left(x\right)}{\partialx_{i}}=\underset{k=1}{\overset{K}{\sum}}\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partialx_{i}}  )]]
    154178
    155 [[LatexEquation( \frac{\partial L^{2}\left(\beta\right)}{\partial\beta_{i}\partial\beta_{j}}=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\beta_{j}}\frac{\partial\gamma_{k}}{\partial\beta_{i}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partial\beta_{i}\partial\beta_{j}}\right)=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partial\beta_{i}}\frac{\partial\gamma_{k}}{\partial\beta_{j}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partial\beta_{i}\partial\beta_{j}}\right)  )]]
     179[[LatexEquation( \frac{\partial L^{2}\left(x\right)}{\partialx_{i}\partialx_{j}}=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partialx_{j}}\frac{\partial\gamma_{k}}{\partialx_{i}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partialx_{i}\partialx_{j}}\right)=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partialx_{i}}\frac{\partial\gamma_{k}}{\partialx_{j}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partialx_{i}\partialx_{j}}\right)  )]]
    156180
     181Thus it is possible to define a variety of information a priori from a
     182pre-existing instance of a transformation defined with their first and
     183second derivatives.
    157184
     185For example we can define a log-normal prior without to define explicitly
     186its log-likelihood, gradient and hessian.