close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Initial Version and Version 1 of OfficialTolArchiveNetworkBysVecLinReg


Ignore:
Timestamp:
Oct 19, 2010, 10:30:53 AM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkBysVecLinReg

    v1 v1  
     1= BysVecLinReg =
     2
     3BysVecLinReg is an open source [wiki:TolPackageRulesAndComments TOL Package] published as partt of [wiki:OfficialTolArchiveNetwork Official Tol Archive Network]
     4
     5BysVecLinReg yields for Bayesian simulator of Vectorial Linear Regression with
     6arbitrary constraining inequations and lineal constraining equations.
     7
     8The method used to solve it in this package is based on
     9[https://www.tol-project.org/export/HEAD/tolp/OfficialTolArchiveNetwork/BysVecLinReg/doc/bayes-linear-minka.pdf Bayesian linear regression Thomas Minka (2001)] using invariant scale prior over
     10[[LatexEquation(A)]] and inverse prior over [[LatexEquation(V)]]
     11
     12== Vectorial linear regression ==
     13
     14Vectorial linear regression equations are [[BR]]
     15
     16[[LatexEquation(Y=A \cdot X + E)]] [[BR]]
     17
     18where [[BR]]
     19
     20 * [[LatexEquation(Y\in\mathbb{R}^{d\times N} )]] is the multivariant known
     21   output matrix, where each row is a different output vector
     22   [[LatexEquation(y_{n}\in\mathbb{R}^{N} )]][[BR]]
     23 * [[LatexEquation(X\in\mathbb{R}^{m\times N} )]] is the known and full rank
     24   input matrix, where each row is a different input vector
     25   [[LatexEquation(x_{n}\in\mathbb{R}^{N} )]] [[BR]]
     26 * [[LatexEquation(A\in\mathbb{R}^{d\times m} )]] has the unknown regression
     27   coefficients that we want to estimate [[BR]]
     28 * [[LatexEquation(E\in\mathbb{R}^{d\times N} )]] is the multivariant
     29   residuals, where each row is the residuals vector
     30   [[LatexEquation(e_{n}\in\mathbb{R}^{N} )]] corresponding to output
     31   [[LatexEquation(y_{n} )]]
     32 
     33All residuals inside the same row are incorrelated normal, but resiudals in
     34the same column [[LatexEquation(j)]] are [[BR]]
     35
     36[[LatexEquation(e_{.,j} \sim N\left(0,V\right) E\in\mathbb{R}^{d\times d} \forall j=1 \ldots d )]][[BR]]
     37
     38where [[LatexEquation(V)]] is symmetric positive definite and unknown, but the
     39same for each column.[[BR]]
     40
     41Minka defines also the known data pair [[LatexEquation(D = left(Y,Xright))]]
     42that will be used just to get more compact conditioninig expressions.
     43
     44== Arbitrary constraining inequations ==
     45
     46We will extend the model scope with arbitrary non null meassured restrictions
     47over parameters inside [[LatexEquation(A)]] by means of adding a set of
     48[[LatexEquation(r)]] inequations defining a feasible region [[BR]]
     49
     50[[LatexEquation(\Omega = \left\{ A\in\mathbb{R}^{d\times m} \mid F\left(A\right) \le 0 \right\})]] [[BR]]
     51
     52being [[BR]]
     53
     54[[LatexEquation( F\left(A\right):\mathbb{R}^{d\times m}\longrightarrow\mathbb{R}^{r} )]]  [[BR]]
     55
     56the arbitrary constraining function. [[BR]]
     57
     58== Invariant-scale prior over coefficient matrix ==
     59
     60Although Minka not explicitly stated in any place, under the invariant prior
     61follows that [[LatexEquation(X)]] must be full-rank [[LatexEquation(m <= N)]]
     62because [[LatexEquation(X W X ^ T)]] must be nonsingular with
     63[[LatexEquation(W = \alpha I_{m})]], where [[LatexEquation(\alpha)]] is the
     64scale-invariant parameter governing the prior and estimated more
     65forward to maximize the evidence of the data, which depends on the assumptions
     66the model.
     67