close
Warning:
Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.
- Timestamp:
-
Jan 18, 2011, 3:41:33 PM (15 years ago)
- Author:
-
Víctor de Buen Remiro
- Comment:
-
--
Legend:
- Unmodified
- Added
- Removed
- Modified
-
|
v22
|
v23
|
|
| 15 | 15 | example, it can be very usefull to handle with data extrated from an stratified |
| 16 | 16 | sample. |
| 17 | | |
| 18 | | This class implements max-likelihood estimation by means of package |
| 19 | | [wiki:OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian simulation |
| 20 | | using [wiki:OfficialTolArchiveNetworkBysSampler BysSampler]. |
| 21 | 17 | |
| 22 | 18 | Let be |
| … |
… |
|
| 61 | 57 | are compatible with lower and upper bounds [[BR]] [[BR]] |
| 62 | 58 | [[LatexEquation( A \beta \le a )]] [[BR]] [[BR]] |
| | 59 | |
| | 60 | This class implements max-likelihood estimation by means of package |
| | 61 | [wiki:OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian simulation |
| | 62 | using [wiki:OfficialTolArchiveNetworkBysSampler BysSampler]. |
| | 63 | |
| | 64 | The only mandatory members are the matrices of output and input of the regression |
| | 65 | {{{ |
| | 66 | #!cpp |
| | 67 | //Output vector 0 o 1 (mx1) |
| | 68 | VMatrix y; |
| | 69 | //Input matrix (mxn) |
| | 70 | VMatrix X; |
| | 71 | }}} |
| | 72 | You can also specify these other members: |
| | 73 | {{{ |
| | 74 | #!cpp |
| | 75 | //Weights vector (mx1), default values are 1 |
| | 76 | VMatrix w=Rand(0,0,0,0); |
| | 77 | //Name of output |
| | 78 | Text output.name = ""; |
| | 79 | //Names of input variables |
| | 80 | Set input.name = Copy(Empty); |
| | 81 | //Set of BysMcmc::@Bsr.TruncatedNormal |
| | 82 | Set prior = Copy(Empty); |
| | 83 | //Constraining matrices A*b<=a |
| | 84 | //Constraining coefficient matrix |
| | 85 | VMatrix A=Rand(0,0,0,0); |
| | 86 | //Constraining border vector |
| | 87 | VMatrix a=Rand(0,0,0,0); |
| | 88 | |
| | 89 | |
| | 90 | }}} |
| 63 | 91 | |
| 64 | 92 | === Weighted Logit Regression === |