close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Version 1 and Version 2 of OfficialTolArchiveNetworkGrzLinModel


Ignore:
Timestamp:
Jan 26, 2011, 2:09:30 PM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkGrzLinModel

    v1 v2  
    1111[source:/tolp/OfficialTolArchiveNetwork/GrzLinModel/WgtReg.tol @WgtReg]
    1212is the base to inherit weighted generalized linear regressions as poisson,
    13 binomial, logit, probit or any other, given just the scalar distribution
    14 function [[LatexEquation( F )]] and the corresponding density function
    15 [[LatexEquation( f )]]. In a weighted regression each row of input data
    16 has a distinct weight in the likelihood function. For example, it can be
    17 very usefull to handle with data extrated from an stratified sample.
     13binomial, normal or any other, given just the scalar link
     14function [[LatexEquation( g )]] and the density function [[LatexEquation( f )]].
     15
     16For boolean and qualitative response outputs like logit or probit there is an
     17specialization on package [wiki:OfficialTolArchiveNetworkQltvRespModel QltvRespModel]
     18
     19In a weighted regression each row of input data has a distinct weight in the
     20likelihood function. For example, it can be very usefull to handle with data extrated
     21from an stratified sample.
    1822
    1923Let be
     
    2327 * [[LatexEquation( \beta\in\mathbb{R}^{n} )]] the regression coefficients
    2428 * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction
    25  * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction
    2629 * [[LatexEquation( g )]] the link function
    27  * [[LatexEquation( f )]] the density fuciton of a distribution of the
    28 [http://en.wikipedia.org/wiki/Exponential_family exponential family]
     30 * [[LatexEquation( f)]] the density function of a distribution of the
     31   [http://en.wikipedia.org/wiki/Exponential_family exponential family]
    2932
    3033Then we purpose that the average of the output is the inverse of the link function
     
    3336  [[LatexEquation( E\left[y\right]=\mu=g^{-1}\left(X\beta\right) )]]
    3437
     38The density function becomes as a real valuated function of at least two parameters
     39
     40  [[LatexEquation( f\left(y_{k};\mu_{k}\right) )]]
     41
     42the output [[LatexEquation( y_k )]] and the average
     43
     44  [[LatexEquation( \mu_{k}=g^{-1}\left(\eta_{k}\right)=g^{-1}\left(x_{k}\beta\right) )]]
     45
     46for each row [[LatexEquation( k=1 \dots  n)]]:
     47
     48If there are more unknown parameters about the density we will supose
     49 
     50
     51=== Weighted Poisson Regresion ===